
ar
X

iv
:2

30
8.

06
41

0v
1 

 [
cs

.P
L

] 
 1

1 
A

ug
 2

02
3

Code Transpilation for Hardware Accelerators

Yuto Nishida, Sahil Bhatia, Shadaj Laddad, Hasan Genc, Yakun Sophia Shao, Alvin Cheung

UC Berkeley

{sahilbhatia, shadaj}@berkeley.edu

Abstract—DSLs and hardware accelerators have proven to be
very effective in optimizing computationally expensive workloads.
In this paper, we propose a solution to the challenge of man-
ually rewriting legacy or unoptimized code in domain-specific
languages and hardware accelerators. We introduce an approach
that integrates two open-source tools: Metalift, a code translation
framework, and Gemmini, a DNN accelerator generator. The
integration of these two tools offers significant benefits, including
simplified workflows for developers to run legacy code on
Gemmini generated accelerators and a streamlined programming
stack for Gemmini that reduces the effort required to add new
instructions. This paper provides details on this integration and
its potential to simplify and optimize computationally expensive
workloads.

I. INTRODUCTION

In recent years, the software industry has witnessed a trend

where Domain-Specific Languages (DSLs) have increasingly

become part of the existing workflows. These specialized

programming languages offer high-level abstractions that are

tailored to solving particular problems or expressing compu-

tations within specific domains. Some examples of DSLs are

Numpy for matrix operations, Tensorflow for deep learning,

and Halide for image processing, among others. On the other

hand, in the hardware industry accelerators have become

increasingly popular. These special-purpose execution engines

are optimized to perform specific tasks, and by offloading

certain parts of computations to them while performing the

remainder on a general-purpose CPU, applications can achieve

performance optimizations.

One common outcome of these trends in both industries

is the development of frameworks that facilitate the adoption

of these specialized tools. By offering high-level abstractions

and automating many low-level implementation details, these

frameworks have made it easier for users to take advantage of

the benefits of DSLs and accelerators. One example of such a

framework is Metalift [1], which enables users to build custom

compilers for translating code written in general-purpose lan-

guages to DSLs. Leveraging program synthesis, Metalift frees

developers from writing syntax-driven rules that can be error-

prone and difficult to specify. On the hardware side, Gemmini

[2] is an open-source framework for building custom DNN

accelerators. It allows developers to generate accelerators and

customize them end-to-end, from architectural templates (such

as spatial arrays and scratchpads) to programming support

(including ONNX format and low-level C++ APIs) to system

support (such as microcontrollers and server-class CPUs).

At present, Gemmini offers two front-ends for running

DNN workloads: high-level push-button support for executing

workloads from ONNX files and low-level C/C++ APIs of

its instruction set for running workloads on the generated

accelerators. However, running legacy or unoptimized code,

such as Fortran-based scientific computing kernels or C++-

based image processing kernels on Gemmini could pose a

challenge for developers. To do so, the developer would either

need to manually translate these kernels or write a syntax-

driven compiler to perform the translation, both of which can

be error-prone and time-consuming. Combining Metalift with

Gemmini can be a powerful approach for automating this

translation from general-purpose languages to Gemmini’s ISA.

Additionally, Metalift’s search-based technique for translation

can be guided by the performance of the translated code on the

generated hardware. This allows for the search to potentially

find hardware parameters that are optimal for running a

particular kernel.

This paper presents our initial work on combining Metalift

and Gemmini. By integrating these two frameworks, we aim

to enable more efficient computations in various domains and

significantly simplify the workflow for developers. Addition-

ally, since both frameworks are open-source it allows for

greater flexibility in integrating the two frameworks which

could lead to improvements and optimizations that benefit both

the communities.

II. APPROACH

We apply Metalift to map array processing code written in

standard Python or C++ (using standard lists and loops, rather

than specialized library functions) to operations that can be

accelerated using Gemmini. Instead of having to hand-write

pattern matching logic to translate common patterns to their

accelerated equivalents, which requires significant engineering

and yields brittle results, we can focus on specifying the formal

semantics of the Gemmini operators and let Metalift search for

an appropriate mapping.

The verified lifting framework that Metalift enables involves

three key steps: defining a grammar to search for the target

language, specifying the semantics of the target language, and

analyzing the behavior of the source program we want to

match the behavior of. The specifications provided to Metalift

are written using a custom intermediate representation that

resembles the APIs of SMT solvers such as Z3. To analyze

the source program, Metalift provides several front-ends that

perform static analysis over Python or LLVM inputs and

generates a symbolic expression over the inputs in the same

Metalift IR.

Metalift performs the software synthesis procedure with

an iterative algorithm which enumerates candidate programs

from the provided grammar, and then verifies the correctness

http://arxiv.org/abs/2308.06410v1


1 vector<int> program(vector<int> data){

2 vector<int> result;

3 for (int i = 0; i < data.size() - 1; i++)

4 result.push_back(data[i] + data[i + 1]);

5 return result;

6 }

(a) User-Provided Sequential C++ Code

Initial Condition Inv(i = 0, result = {}, data)

Preservation
Inv(i, result, data) ∧ (i < size(data)) →
Inv(i + 1 , result.push back(data[i] + data[i+1]) , data)

Termination Inv(i, result, data) ∧ ¬ (i < size(data)) → PS(result , data)

(b) Verification conditions for the source code.

1 def gemmini_conv(data, kernel, stride):

2 if length(data) < len(kernel):

3 return []

4

5 return prepend(

6 dot_product(data, kernel),

7 gemmini_conv(data[stride:], kernel, stride))

(c) Semantics of the convolution operator provided to Metalift

1 Synthesized:

2 program = gemmini_conv(data, kernel=[1,1], stride=1)

3

4 Invariant:

5 (i ≥ 0) && (i < (length(data)) &&

6 out = gemmini_conv(data[:i+1],kernel=[1,1],stide=1)

(d) Program lifted to use Gemmini operators

Fig. 1: The four steps of the Metalift pipeline, adapted for the domain of translating C++ kernels to Gemmini.

of the candidate by querying an SMT solver. To perform

this verification step for code involving loops with dynamic

bounds, Metalift synthesizes additional loop invariants, which

make it possible to reason about the result of the program for

any number of iterations.

Consider the input code in Figure 1a, which computes the

sums of values within a sliding window. Readers familiar

with primitives for tensor accelerators may recognize this as

a convolution, but this is not explicit in the code and the

developer may not have this same insight. Our goal is to use

verified lifting to automatically synthesize an provably equiv-

alent function that uses an accelerated convolution operator.

Our first step using Metalift is to specify the grammar to

search for the target program. We model each accelerated op-

erator as a function that takes input tensors and configuration

parameters as inputs and produces a new tensor as an output.

Then, we can build up the grammar by starting with the inputs

to the programs as leaves and layering compositions of the

available Gemmini operators.

The other half of specifying the target language is to

provide formal models of each operator, so that we can verify

synthesized candidates against the source program using an

SMT solver. In Metalift, the target language is specified by

providing implementations in terms of the Metalift IR, which

is later passed to the solver. In our implementation, we include

specifications for core Gemmini operators such as matrix

multiplication and convolutions (Figure 1c). But beyond these

core specifications, Metalift is given no additional information

about when these operators should be used—it has to discover

appropriate mappings by searching the grammar.

III. RESULTS AND FUTURE WORK

Metalift can translate the code in fig. 1a to generate the

equivalent code in Gemmini’s ISA (Figure 1d) in <1min and

this compiler was implemented in <100 LOC. Our initial

prototype encodes the semantics of matrix multiplication and

convolution operator from Gemmini’s ISA. Using our initial

compiler, we will translate the cloverleaf benchnmarks in [3]

and the image processing kernels introduced in [4].

At present, Metalift can perform code translation for a fixed

Gemmini generated accelerator. Our plan is to integrate the

search for hardware parameters into the synthesis procedure

of Metalift’s. The integrated workflow would involve the

user providing the source code to be translated and potential

Gemmini’s generator parameters, such as the scratchpad size

or the systolic array dimensions. In addition to searching for

equivalent code in Gemmini’s ISA, Metalift can also search

for the most optimal accelerator parameters for executing the

given source program. The search procedure would be guided

by the performance of the translated code on the accelerator.

However, running every possible candidate on the accelerator

may be too expensive and slow down the translation process.

Therefore, we need to develop a reliable proxy cost model

that can be evaluated quickly and guide Metalift’s search

procedure.

A unified framework with Metalift and Gemmini could open

up new research directions in improving the hardware software

co-design. Overall, this combination offers an exciting oppor-

tunity for automatically translating legacy code and achieving

high-performance execution on custom hardware.

REFERENCES

[1] “Metalift,” https://github.com/metalift/metalift , 2023.
[2] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,

D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,
I. Stoica, J. Ragan-Kelley, K. Asanovic, B. Nikolic, and Y. S. Shao,
“Gemmini: Enabling systematic deep-learning architecture evaluation
via full-stack integration,” in Proceedings of the 58th Annual Design

Automation Conference (DAC), 2021.
[3] S. Kamil, A. Cheung, S. Itzhaky, and A. Solar-Lezama, “Verified lifting

of stencil computations,” ACM SIGPLAN Notices, vol. 51, no. 6, pp.
711–726, 2016.

[4] M. B. S. Ahmad, J. Ragan-Kelley, A. Cheung, and S. Kamil, “Automati-
cally translating image processing libraries to halide,” ACM Transactions

on Graphics (TOG), vol. 38, no. 6, pp. 1–13, 2019.

https://github.com/metalift/metalift

	Introduction
	Approach
	Results and Future Work
	References

