
Invited Paper: Initial Steps Toward a Compiler for
Distributed Programs

Joseph M. Hellerstein
hellerstein@berkeley.edu

UC Berkeley
Berkeley, CA, USA

Shadaj Laddad
shadaj@berkeley.edu

UC Berkeley
Berkeley, CA, USA

Mae Milano
mpmilano@berkeley.edu

UC Berkeley
Berkeley, CA, USA

Conor Power
conorpower@berkeley.edu

UC Berkeley
Berkeley, CA, USA

Mingwei Samuel
mingwei@shv.com
Sutter Hill Ventures
Palo Alto, CA, USA

ABSTRACT
In the Hydro project we are designing a compiler toolkit that can
optimize for the concerns of distributed systems, including scale-up
and scale-down, availability, and consistency of outcomes across
replicas. This invited paper overviews the project, and provides
an early walk-through of the kind of optimization that is possible.
We illustrate how type transformations as well as local program
transformations can combine, step by step, to convert a single-
node program into a variety of distributed design points that offer
the same semantics with different performance and deployment
characteristics.

KEYWORDS
distributed computing, programming languages, compiler, query
optimization, dataflow

ACM Reference Format:
Joseph M. Hellerstein, Shadaj Laddad, Mae Milano, Conor Power, and Ming-
wei Samuel. 2023. Invited Paper: Initial Steps Toward a Compiler for
Distributed Programs. In The 5th workshop on Advanced tools, program-
ming languages, and PLatforms for Implementing and Evaluating algorithms
for Distributed systems (ApPLIED 2023), June 19, 2023, Orlando, FL, USA.ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3584684.3597272

1 INTRODUCTION
An ongoing thread in distributed computing is the development of
new programming models and languages built on formal models
that can simplify the challenges developers face in building dis-
tributed software. This thread includes programming languages
like Dedalus [3], Bloom [2, 10], LVars [27], Lasp [32], Datafun [4]
and Gallifrey [33], as well as data structures like CRDTs [38] and
their realization in libraries like Automerge [24].

This short paper is part of an evolution from language design
to a full stack for distributed programming. Is it possible to build

ApPLIED 2023, June 19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0128-3/23/06.
https://doi.org/10.1145/3584684.3597272

a language stack (multiple surface languages with shared compi-
lation, debugging and deployment) that addresses the concerns of
developers writing distributed programs? How much work can be
done automatically? Of what remains, what is amenable to com-
piler assistance and human review? Can compiled code compete
with hand-written code? Can a compiler discover optimizations
that humans do not? This paper is an early snapshot of our work
in this domain. It does not claim to answer all of these questions,
nor even to answer any one of them definitively. We narrow our
focus here to automatic compiler transformations, with much of
the discussion driven from simple examples. In short, this paper
is intended as a progress report and an opening for community
engagement.

Traditional optimizing compilers concern themselves with effi-
cient use of computing resources including the various aspects of
CPUs, GPUs, memory and interconnects. All of these concerns exist
in distributed systems of course, but are augmented by concerns
that are endemic to distributed systems: notably communication,
partitioning of work across machines, fault tolerance, concurrency
and consistency of data and outcomes, and respect for invariants
related to security, privacy and governance. We assume that tra-
ditional optimizer toolkits like LLVM [30] will continue to serve
the purposes of optimizing the code that runs on each machine; we
focus on the challenge of providing abstractions and compilers for
the unique distributed aspects of modern programs.

We ground our discussion in the context of the Hydro project,
a multi-year effort at UC Berkeley and Sutter Hill Ventures. We
laid out our vision for Hydro in an earlier paper [8], proposing a
compiler stack (Figure 1) with multiple components. As the highest
level of input to Hydro, we hope to support a multitude of dis-
tributed programming styles, much like LLVM provides a compiler
stack for a multitude of sequential programming languages. Also
like LLVM, Hydro envisions multiple layers of intermediate rep-
resentation languages (IRs) that can serve as common ground for
program checks and transformations, providing developers with
various entry points to work deeper in the stack as they see fit. The
top layer of Hydro we call Hydraulic: a system to lift low-level code
from legacy interfaces into a higher-level declarative distributed IR
we dub Hydrologic. The next layer down is an optimizing compiler
we call Hydrolysis, which takes Hydrologic and compiles it to run
on multiple instances of a single-threaded, asynchronous dataflow

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-7712-4306
https://orcid.org/0000-0002-6658-6548
https://orcid.org/0000-0003-3126-7771
https://orcid.org/0000-0002-0660-5110
https://orcid.org/0009-0004-9873-6266
https://doi.org/10.1145/3584684.3597272
https://doi.org/10.1145/3584684.3597272
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584684.3597272&domain=pdf&date_stamp=2023-06-20

ApPLIED 2023, June 19, 2023, Orlando, FL, USA Hellerstein, et al.

…

Cloud
Services…FaaS Storage ML

Frameworks

Actors
(e.g. Orleans)

Functional
(e.g. Spark)

Logic
(e.g. Bloom)

Futures
(e.g. Ray)

P Program
Semantics

A
Availability

New
DSLs

HYDROLOGIC

HYDRAULICVerified Lifting

HYDROLYSIS Compiler

HYDROFLOW
Deployment

HYDROFLOW
Program

C
Consistency

Targets for
Optimization
T

Sequential
Code

HYDRO

Figure 1: The Hydro compiler stack [8].

IR called Hydroflow. Work toward Hydraulic and Hydrologic is
ongoing, with initial results beginning to emerge [28].

The focus for this paper is on Hydrolysis—specifically we want
to explore the feasibility of a compiler that can produce Hydroflow
programs optimized for different deployment objectives. We con-
sider the potential for a transformation-based compiler that can
correctly modify a Hydroflow program, step-by-step, into one or
more alternative Hydroflow programs that offer the same results
with different performance or deployment characteristics. Like
many dataflow systems, Hydroflow is an extension of the relational
algebra. As such it is amenable to the kinds of query optimizations
pioneered for database systems, as well as a host of optimizations
that are apropos for general-purpose distributed programs. Follow-
ing the model of the widely-used Cascades query optimizer [15] and
the renewed enthusiasm in the programming languages commu-
nity for e-graphs [35, 41], we view query optimization as a problem
of program transformation. Basically, we assume we can translate
from Hydrologic to some semantically-equivalent single-node Hy-
droflow program (“execution plan”) in a naive fashion—essentially
via parsing Hydrologic without concern for distributed deployment
or performance. The compiler’s job then is to search the space
of semantically equivalent dataflow programs running on one or
more machines, and choose the configuration that is most desirable
according to an objective function on various metrics (e.g. cloud
costs, runtime performance, resilience to failures, etc.) with various
constraints or invariants on how data and communication are to
be managed.

In the style of Cascades and egraphs, we envision optimization
via repeated application of simple local program transformations,
using compact memoization to keep track of prior states and avoid
repeated work. The basic loop is this: the current Hydroflow pro-
gram is stored in a memoization structure, and a local transforma-
tion rule (a kind of peephole optimization) is applied to a small
segment of the Hydroflow program to get another semantically
equivalent Hydroflow program that we have not seen before. In the
presence of a cost model and objective function, pruning is applied
to the memo structure and search space to keep only those can-
didates that may participate in an optimal outcome. This process

repeats until all possible semantically equivalent dataflows have
been generated or ruled out as suboptimal via pruning.

This paper does not deliver on the full vision of the Hydrolysis
optimizer, though we sketch next steps in Section 6. Our discussion
here is an early demonstration of manually applied transformation
rules that achieve useful optimizations for correctly distributing
programs across machines. We do not pretend to offer a comprehen-
sive set of such transformations as of yet. Our goal is to document
our growing confidence in the potential for an optimizing compiler—
specifically one based in a dataflow model—to meaningfully assist
in the development of efficient, correct distributed programs.

1.1 Why Dataflow?
One of the signatures of the Hydro project is the opinionated deci-
sion to use a high-performance dataflow kernel as its lowest-level
language. This may not be an obvious choice to researchers in
classical distributed systems.

At the outset, wewere confident about the scalability of a dataflow
IR because of the success of prior dataflow engines at auto-parallel-
ization. Languages like SQL and Spark have put effortless scaling
into the hands of programmers for decades, even as other broad ef-
forts at parallel and distributed programming languages failed [19].
The runtimes for those data-centric languages are parallelized
dataflow engines. Unlike Spark and Hadoop, dataflow runtimes
for SQL have targeted heterogeneous workloads and performance
goals, including low-latency infrastructure. There was reason to be
confident that dataflow can meet our low-level performance goals
and scale with ease, as we discuss below.

More generally, by using dataflow we gained access to a long
tradition of database and compiler literature on optimization. The
database literature is founded on the duality between dataflow
algebra and high-level query languages like SQL—i.e., Codd’s The-
orem [9], the basis of his Turing Award. Because Hydroflow is so
close to query languages like SQL or Datalog, we can apply the full
body of database theory and practice to our compiler runtime.

One of the benefits of dataflow and query languages that we
exploit is the ease of refactoring code. Auto-parallelization of se-
quential code involves teasing apart a monolithic program into
separable components, and dataflow makes this almost trivial. Ev-
ery dataflow program is a graph of producers and consumers, so
refactoring a program into separate software components is almost
as simple as changing local dataflow pipes into network channels.
Of course this requires care to maintain program semantics, as we’ll
discuss below. By contrast, as any software engineer knows, it can
be very hard to refactor a sequential program without breaking it—
this is especially true of complex programs like the Paxos variants
we have been building.

Second, the primary syntactic feature of a dataflow language is
the explicit specification of data dependencies. Our transformations
use data dependencies to analyze the interplay between compo-
nents, and reason about the implications of placing components on
separate nodes across networks. By contrast, data dependencies in
sequential programs are implicit, based on complex program slic-
ing [39] that has to account for issues of control flow and mutable
state that are absent in dataflow models.

Invited Paper: Initial Steps Toward a Compiler for Distributed Programs ApPLIED 2023, June 19, 2023, Orlando, FL, USA

In addition to these overarching benefits, database theory pro-
vides us with additional technical tools that are relevant to dis-
tributed systems. One of particular interest is the ability to use
simple checks for monotonicity, the property that the CALM Theo-
rem shows to be both necessary and sufficient for consistent results
in the absence of coordination [21]. We can exploit this to decouple
code freely across multiple machines without thought for ordering,
synchronization or coordination. Another feature of interest is the
availability of functional dependencies to describe state invariants
that ensure safe partitioning (sharding) of code and state. A third
tradition is the body of literature on data provenance [7], which
allows data dependencies to be analyzed in subtle ways, with ap-
plications to distributed systems including use in efficient fault
injection [1]. These topics are beyond the scope of this paper.

1.2 Hydroflow and Prior Work
The open-source implementation of Hydroflow [37] provides the
concrete setting for our discussion in this paper. As input, the Hy-
droflow system takes single-node Hydroflow specs embedded in
Rust programs, which can use networking components to commu-
nicate with each other. Hydroflow provides the libraries, support
routines and compilation scaffolding to allow the Rust compiler
(which uses LLVM) to emit high-performance code on each indi-
vidual node. The details of Hydroflow can be found in the online
Hydroflow book [23]; we provide a brief overview here.

At a high level, Hydroflow is similar to many dataflow runtimes
and languages, ranging from database system internals going back
to System R [5], Ingres [16], and later extensible runtimes like Vol-
cano [14]. Modern readers may bemore familiar with contemporary
data analytics libraries like Spark [44], Timely Dataflow [34] and
Pandas [31]. Hydroflow targets somewhat different performance
and correctness goals than the prior work:

Machine Model. As a low-level IR, the goal for Hydroflow is to
support programs that can be distributed across both cores and ma-
chines at any scale from a single box to the globe and beyond [42].
Hydroflow models the behavior of a set of independent communi-
cating agents (“nodes”), each with its own local state and logical
clock. Hydroflow assumes only point-to-point communication, with
no assumptions of reliability or ordering on channels, nor built-
in facilities for broadcast. In practice, a sender can communicate
only with a receiver for whom it has an address in its local state.
This captures a standard asynchronous model in which messages
between correct nodes can be arbitrarily delayed and reordered,
and formally all messages are eventually delivered after an infinite
amount of time [12], but in practice delays can be managed via
timeouts, which can be specified to arrive as external stimuli to
the system. The Hydroflow runtime and language make no fur-
ther assumptions about failures of nodes or message delivery. The
runtime offers general MPMD setups where each node can have
different programs and data; more uniform setups are possible as
well. Hydroflow does assume a globally-defined namespace for net-
work endpoints (e.g. IP:port for internet deployments), but it does
not assume individual nodes have knowledge of node membership.
The runtime assumes no built-in mechanism for shared state across
nodes in the language, but shared memory queues are supported
transparently as a communication channel when feasible.

A Single-Node Kernel With Networking Support. Many mod-
ern dataflow systems from the “Big Data” era are designed for
parallel execution across multiple nodes. In the Hydro stack, any
cross-thread “global” model—be it for analytics, live services, or
other applications—is the purview of the higher-level Hydrologic
language, which is compiled down into Hydroflow. Hydroflow itself
is a single-threaded language intended to be run on a single core,
with communication support (both shared-memory and network-
ing) allowing multiple Hydroflow instances to run in parallel and
communicate efficiently. Using a rough analogy to parallel database
systems, Hydrologic’s global view is akin to SQL, whereas Hy-
droflow is a “query plan” language and compiler for an individual
core participating in the execution of a parallel query.

Low-latency Data Handling. Many Big Data and Warehousing-
centric systems focus on throughput and bulk-synchronous pro-
cessing. While this is possible in Hydro, we also target low-latency
performance for handling asynchronous network events. In this
sense Hydroflow is closer to the Click router [26] than Big Data
systems like Spark. Like Click, Hydroflow includes support for effi-
ciently managing “push” and “pull” dataflow operators, harnessing
the Rust compiler’s monomorphization techniques to the task of
compiling push/pull dataflows into highly-efficient code that is
aggressively “inlined” [36].

Algebraic Typing forDistributedConsistency. Hydroflow builds
on research in exploiting formal properties like monotonicity [22]
for assessing the distributed consistency properties of programs.
Like Bloom [2], it provides a rich dataflow model for compos-
ing complex programs, and non-monotonicity analysis to identify
program locations that require coordination for consistency. Like
LVars [27], Bloom𝐿 , Lasp [32], Gallifrey [33] and Datafun [4], it
uses algebraic properties of join semi-lattices—namely Associa-
tivity, Commutativity and Idempotence (a.k.a “ACID 2.0” [18])—to
distinguish monotonic code fragments from those that require coor-
dination for consistency. Hydroflow is unique in formally modeling
the properties of the dataflow runtime itself using join semi-lattices.

Hydroflow’s modeling of dataflow as a join semi-lattice drives
a number of our optimization examples below, so we discuss it in
more detail in the next section.

Before proceeding, we should address common concerns about
performance. Empirically, Hydroflow’s performance is hitting per-
formance targets we set at the outset of the project. For example,
a Hydroflow implementation of Compartmentalized Paxos [40]
provides better latency and peak throughput than the original
handwritten Scala code that was state-of-the-art two years ago [20].
Similarly, a Hydroflow implementation of the Anna key-value store
outperforms the original handwritten C++ code and matches its lin-
ear scaling under conflict [20]; the original Anna paper was already
providing performance under contention that was orders of mag-
nitude faster than research and production systems like Redis and
Masstree [42]. Raw performance is no longer one of our primary
concerns; optimization is the next challenge.

2 DATAFLOW, NETWORKS, AND LATTICES
Dataflow is a widely-used programming model for composing sim-
ple data operators into complex programs represented as directed

ApPLIED 2023, June 19, 2023, Orlando, FL, USA Hellerstein, et al.

1 source_stream(shopping) -> [0]lookup_class;
2 source_iter(client_class) -> [1]lookup_class;
3 lookup_class = join()
4 -> map(|(client, (li, class))| ((client, class), li))
5 -> group_by(Vec::new, Vec::push)
6 -> map(|m| (m, out_addr)) -> dest_sink_serde(out);

shopping

join
0

client_class

1 map group_by map out

Figure 2: Original Flow

graphs. In many dataflow systems, the operators have formal se-
mantics, often as a superset of the relational algebra. By contrast,
the semantics of “edges” in the dataflow are often implicit in an
execution model. Typically, the implicit assumption is that an edge
from a producer operator P to consumer operator Q (denoted P -> Q)
indicates that P delivers a stream of data to Q. This stream semantics
implies an ordering constraint: if P delivers data in a certain order,
Q will receive it in that order. In Section 4.1 we discuss how this
can be formalized, but for now we can imagine that the producer
implicitly assigns a sequence number to each item it sends, and the
consumer is guaranteed to receive those items in monotonically
increasing order of those sequence numbers.

Dataflow operators can also pass data over a network, a special
kind of dataflow edge. A “network edge” of this type downgrades
the type of communication from ordered streams, by garbling the
ordering, batching, and number of transmissions of each item in
the stream. If we again imagine implicit sequence numbers at the
producer, the consumer has no guarantee of receiving data over a
network edge by monotonically increasing position1. In the absence
of these guarantees, it is difficult to reason about the consistency
of program outcomes across multiple executions. In particular, if
a program with network edges is replicated, the replicas may be
inconsistent; alternatively, if such a program crashes and is re-
executed (e.g. by a recovery protocol) the second run may not
match the prefix of outcomes that happened in the initial run.

To address these concerns, various projects across decades of
work have explored the idea that certain operators remain consis-
tent even when run on networked edges and/or replicated. If the
operators are inherently Associative, Commutative and Idempo-
tent in their handling of input data, they upgrade the dataflow
back to consistency of outcomes across networked executions
(see [4, 13, 18, 27, 32, 33, 38], etc.) Mathematically, an operator
with these properties is a join semi-lattice [38] (henceforth we will
just use the term “lattice”), and monotonic. These monotonic lat-
tice operators will produce identical outcomes in the face of data
arriving in different batches (associativity), orders (commutativity)
or multiplicity (idempotence). These properties are compositional,
so a dataflow composed of join semi-lattices is itself a composite
join semi-lattice. If we can transform our code—whether it be the
entire program, or just a component—to use lattices exclusively, we
can rest easy about the distinctions between local and networked

1Some networking protocols like TCP offer reliable ordered delivery. These protocols
are not a panacaea for many applications, however—it’s quite common for TCP sessions
to terminate unpredictably. As a result, many long-running services layer their own
solutions to ordering and reliability on top of multiple unreliable TCP sessions [17].

edges within that scope. The data types will ensure deterministic
outcomes across networks2.

Given this background, one of the goals of optimization in Hydro
is to transform programs to make liberal use of lattice operators. To
ensure consistency—-that is, determinism across runs and replicas—
code segments using non-lattice operators either must run on a
single sequential core, or, if distributed, must establish consensus
on the order of operations using a protocol like Paxos [29], which
often negatively affects latency and availability [22].

Because lattices lie at the heart of our goals of correctly auto-
distributing programs, we focus on foundational lattice-oriented
transformations in this paper. There are of course many more trans-
formations that are relevant to distributed program optimization.
Two that we have explored extensively in implementing Paxos
over Hydroflow are auto-decoupling of subprograms and auto-
partitioning (sharding) of code and state [20]. However here we
stay focused on initial optimizations that demonstrate our ability
to safely distribute a simple example in multiple ways.

3 A CLASSIC SCENARIO: SHOPPING CARTS
To illustrate the potential for Hydrolysis, we show how a compiler
can take a simple single-node Hydroflow program and transform it
step-by-step into a semantically equivalent distributed alternative
with a clever twist from the literature. Specifically, we consider the
classic problem of implementing a shopping cart, inspired by the
Amazon Dynamo paper [11]. Our goal will be to step through a
sequence of individual transformations in the Hydrolysis search
space, as an example of the transformation paths that Hydrolysis
would enumerate. All the code we show below runs correctly in
Hydroflow, and is available in full at https://github.com/hydro-
project/hydroflow/tree/applied23/hydroflow/examples/shopping.

Given a single-node implementation of a shopping cart system,
we partition the program between client and server, replicate the
servers for fault tolerance, and introduce an optimization from Con-
way et al. [10] to work with lattices throughout—hence allowing
not only shopping but also checkout to proceed without using any
distributed coordination.

Our naive Hydroflow code for the shopping carts is shown in
Figure 2, along with an auto-generated dataflow diagram of the
code. We envision two classes of shopping data, one for basic cus-
tomers and one for “premium” customers. The type of the shopping

2The CALM Theorem [22] proves that this relationship is bidirectional: programs are
consistent across unreliable network edges if and only if they provide monotonicity
guarantees of the form guaranteed by lattices. CALMwas proven in a formal framework
of distributed logic programming rather than distributed algebra, so there are still
some technical details to be done to apply this argument to a language like Hydroflow,
but the intuition is fairly direct.

https://github.com/hydro-project/hydroflow/tree/applied23/hydroflow/examples/shopping
https://github.com/hydro-project/hydroflow/tree/applied23/hydroflow/examples/shopping

Invited Paper: Initial Steps Toward a Compiler for Distributed Programs ApPLIED 2023, June 19, 2023, Orlando, FL, USA

data streaming in is of the form Stream<ClientLineItem>—an un-
bounded list of requests. ClientLineItem is a nested pair (client:
usize, (item: String, qty: i16)) representing a request from
a client with a non-negative integer ID (Rust’s usize type) to add a
quantity of a specific item to their shopping cart, or delete a quantity
of an item (via negative qty). In this simple program, a shopping
cart is similar to string data, but rather than being an ordered list
of characters, it is an ordered list of ClientLineItems3.

We begin in Figure 2 with a single-node Hydroflow implementa-
tion that we envision being generated naively from a distribution-
agnostic Hydrologic spec. We will walk through this code in some
detail; subsequent snippets in the paper use substantially the same
operators, just reconfigured via various transformations.

In the Hydroflow language, -> represents a stream of data flow-
ing from a producing operator to a consuming operator on a single
node. Hydroflow offers a variety of operators familiar from rela-
tional algebra and functional languages like Spark or Pandas, in-
cluding the ability to embed "user-defined functions" (i.e. arbitrary
single-node sequential code) in operators like map and reduce.

Taking the code one line at a time, we begin in Line 1 with a
source_stream operator that takes an unbounded stream of pack-
ets as they arrive from an IP port (defined in a variable shopping in
a Rust prelude to the Hydroflow program) and passes them to the
first input (input [0]) of a subgraph called lookup_class. Line 2
begins with a source_iter operator that iterates once through a
iterable Rust collection (defined in the variable client_class) in
a Rust prelude to the program) and passes the results to the second
input (input [1]) of the lookup_class subgraph.

The remaining four lines specify lookup_class. Line 3 specifies
a relational equijoin on (key, value) pairs from the two inputs;
inputs that match by key are concatenated in an output tuple of
the form (key, (value0, value1)). Line 4 is a map function that
takes the output of the join and reformats it to suit the next operator
in Line 5. This is a SQL-style group_by that accepts tuples of the
form (key, value)—in this case the preceding map generates a
key of the form (client, class) and a value li.The group_by
partitions the data by key, and per key it aggregates ("folds") the
values using a pair of an initialization function (in this case a Rust
Vec::new declaring an empty vector) and an iteration function (in
this case Vec::push which pushes each tuple to the end of the
vector). The result is a stream of tuples, one per distinct key. In
Line 6we have two operators that together do network transmission.
The first is a map function to format tuples of the form (payload,
destination), and the second a dest_sink_serde that serializes
each payload m via internal Rust libraries and ships each one to
the Hydroflow node at the destination out_addr (a Rust variable
defined in the prelude).

3It is tempting to assume that shopping requests would be better represented as a
set than a stream. The problem is that the quantity of each item needs to be handled
carefully. Imagine that a customer orders 2 apples, then orders 2 more apples, then
deletes 4 apples. In the end they truly want 0 apples. Two problems arise. One is
that sets are idempotent, but counting/summing is not. So the following two sets
are equivalent { (𝑎𝑝𝑝𝑙𝑒 × 2), (𝑎𝑝𝑝𝑙𝑒 × 2) } = { (𝑎𝑝𝑝𝑙𝑒 × 2) }, but the following
streams are not equivalent [(𝑎𝑝𝑝𝑙𝑒 × 2), (𝑎𝑝𝑝𝑙𝑒 × 2)] ≠ [(𝑎𝑝𝑝𝑙𝑒 × 2)]. The second
problem is that the semantics of deletion and insertion may not be commutative: in
some applications, we may ignore "overdrafts" that go below 0. For example, in some
definitions, [(𝑎𝑝𝑝𝑙𝑒 × −4)], [(𝑎𝑝𝑝𝑙𝑒 × 4)] = [(𝑎𝑝𝑝𝑙𝑒 × 4)] because the deletion
on an empty cart is ignored. Stream semantics ensure these issues are unambiguous.

More intuitively, this flow iterates through customer requests
via the source_stream operator. It then does a join with a stored
client_class table to look up a unique ClientClass tag for each
client via the join operator, and loads the tagged shopping requests
into the stateful group_by operator. The group_by operator is ini-
tialized with an empty vector (generated by Vec::new) which it
accumulates by pushing each LineItem that arrives to the end of
the list. The result is tagged via mapwith a (externally-provided) des-
tination address out_addr and sent over the network in serialized
form by dest_sink_serde.

The shopping stream grows monotonically without bound. This
means that the group_by operator is never able to assemble a "final"
answer for a group; even if we hacked it to “time out”, at best it
could output a “string prefix” (lower bound) of future answers. If we
were to allow the group_by to pass values to the network, then the
external agent at out_addr could see non-deterministic prefixes
of the shopping cart. If we replicated this code to another node in
the system, it might make different choices about which group_by
values to send out on the network, leading to inconsistency.

For correctness, then, the group_by in this case can only output
final results for each client “at the end of time”—i.e. when some
operational semantics of the system determines that the stream
flowing into the group_by will never produce more data. While
we could augment our program with another channel for client
“checkout” messages, that would still not help our dataflow sys-
tem understand the application semantics of when to release the
group_by data, because checkouts could race with orders! Instead,
we’d like to capture “end-of-stream” explicitly in our type system
so the developer can inform the group_by operator how to reason
formally about safe release of outputs. We address this issue in the
next section.

4 TYPE UPGRADES FOR SHOPPING CARTS
In this paper, we consider two kinds of transformations: type up-
grades (this section) and local graph transformations (next section).

The type upgrades we seek are all bounded join semi-lattice types.
As discussed in Section 2, if we can convert to lattice types for our
operators, we can override the problems introduced by networks.
But we want more than just join semi-lattices; we want bounded
join semi-lattices (henceforth “bounded lattices”) that have a well-
defined finite "top" element ⊤. This element at the top of the lattice
has the property that once the operator’s output reaches ⊤, it will
remain ⊤ in the face of any new input. This allows the operator to
output the value ⊤ at any time, without fear of future retraction4.

We now proceed to show how Hydrolysis might transform our
program to “upgrade” the types to bounded lattices.

4.1 Bounded Prefix Lattice (BP)
In this variation, the type of the incoming data is a stream of
bounded lattice points Stream<BoundedPrefixLattice𝑆>. The lat-
tice BoundedPrefixLattice𝑆 is defined as follows. Given some

4Bounded semi-lattices may be the only reasonable data types to transmit across a
network. Indeed, many consistency tricks in the distributed systems literature attach
lattice metadata to objects in the dataflow; TCP sequence numbers, Lamport clocks
and vector clocks are three common examples. In effect this metadata “upgrades” the
network to use lattices, but this is not typically reflected in a type system for a compiler
or debugger to reason about!

ApPLIED 2023, June 19, 2023, Orlando, FL, USA Hellerstein, et al.

1 source_stream(shopping_bp) -> [0]lookup_class;
2 source_iter(client_class) -> [1]lookup_class;
3 lookup_class = join()
4 -> map(|(client, (li, class))| ((client, class), li))
5 -> group_by(bp_bot, bp_merge)
6 -> map(|m| (m, out_addr)) -> dest_sink_serde(out);

shopping_bp

join
0

client_class

1 map group_by map out

Figure 3: Bounded Prefix Lattice.

fixed-length string 𝑆 , the domain of the lattice is a set of pairs
(𝑠𝑖 , len(𝑆)) containing the unique prefix of 𝑆 of length 𝑖 , and the
full length of 𝑆 . The semijoin operator ⊔ of this lattice takes two
prefixes and simply returns the one with the longer prefix. Note
that any two elements of BoundedPrefixLattice𝑆 are guaranteed
to share the shorter prefix by definition of both being prefixes of
the same 𝑆 . Similarly, elements of BoundedPrefixLattice𝑆 and
BoundedPrefixLattice𝑇 are from different lattices and are incom-
parable. Each BP has a finite top element ⊤ = (𝑆, len(𝑆)), which
is identifiable in isolation—it is the only legal element whose first
component 𝑆 has length matching the second component!

We can rewrite our program of Figure 2 to use a BP without
changing its output; the result is shown in Figure 3, with the modi-
fied shopping_bp input converting each request to a BP type cor-
responding to its specific shopping session, and tagged with the
length of the session (i.e. the number of requests in the session).
Rather than streaming individual lineitems (corresponding to “char-
acters” of a “string”), it streams vector prefixes of monotonically
increasing length. Notice how the group_by operator is now ini-
tialized with the “bottom” (⊥) of the lattice via bp_bot, and uses
the lattice merge operator bp_merge (line 5) rather than the ad-hoc
vector push logic of Figure 2 (line 5). Needless to say using BPs is
less efficient in time and space than our original program. But this
variation allows us to produce output in bounded time, and the flow
is now based entirely on monotonic lattice operators, paving the
way for tolerating network edges in subsequent transformations.

4.1.1 Optimizations on BPs. If we know that an edge in our dataflow
is a local edge, then we know it preserves ordering and exactly-
once delivery between producer and consumer. We can exploit that
ordering semantics to implement the BP in a more efficient manner.
The result will be similar to our original program based on Vecs, but
with guarantees to allow outputs as soon as possible. Specifically,
assume we have a producing operator P and consuming operator
Q, and P emits a stream of monotonically increasing BP points (i.e.
Vec prefixes) across a standard (non-network) edge. We can rewrite
the flow segement P -> Q as P -> odiff -> append(len(𝑆))
-> Q where the output of odiff(𝑠 𝑗) is the “ordered diff”—the suffix
of items from the input that were not produced in any previous
output 𝑠𝑖 , 𝑖 < 𝑗—and append(len(𝑆)) maintains a buffer of length
len(𝑆) to reassemble the ordered diffs back into longer and longer
prefixes.

This rewrite preserves the BP semantics for 𝑃 and𝑄 while avoid-
ing the space consumption and data copying of redundant prefixes.
Stream termination is detected when the append buffer is full. For
correctness, this optimization requires that the edge between odiff
and appendmaintains ordering and exactly-once delivery. Ordering

comes “for free” on local edges running on a single thread with P
and Q. Note that the append operator is not a lattice operator: it is
neither associative, nor commutative, nor idempotent. Instead it
relies upon the edge itself to be “upgraded” to an ordered, exactly-
once delivery.

This optimization opens up the possibility of more optimizations
to avoid or postpone reassembling the prefixes. For example, sup-
pose that Q is the operator map(|s| uppercase(s)). Then Q runs
correctly on odiffs, and hence we can rewrite our program by
“pushing” Q earlier in the stream (𝑃 -> odiff -> 𝑄 -> append)
without changing semantics. This now requires that all edges be-
tween odiff and append must be ordered and exactly-once, but it
ensures that uppercasing is only done once per character. In the
most felicitous case, we are able to optimize a single-node program
by “pushing” the odiff operator to the beginning of the flow, and
the append operator to the end of the flow. In such a case, the flow
becomes an intuitive local, ordered stream of small individual items.
As a separate optimization, we may be able to fuse odiff into 𝑃 , or
append into 𝑄 in certain circumstances. In our original program,
the ‘group_by‘ was doing precisely the work of append, so if it was
next to an append operator we could entirely delete the append
without changing semantics.

These optimizations do not always apply. Moreover, optimized
BPs require local edges. As an alternative, we shift attention to
an alternate (isomorphic!) structure, the Sealed Set of Indexed Val-
ues, a fully lattice-based approach that works across “downgraded”
network edges with relatively small space overheads.

4.2 Sealed Set of Indexed Values Lattice (SSIV)
The idea with the SSIV is to embrace the idea of “diffs”, but allow
them to be accumulated in an ACI fashion. Borrowing ideas from
TCP and Conway, et al. [10], we exploit two tricks simultaneously to
get a bounded lattice. To begin, we can represent a string 𝑆 as a set
of indexed values (value, pos) accumulated via union (sets with
union form a lattice!), where pos is a natural number representing
a position (index) in the string. Having converted from a vector to a
set lattice, we can use a simple trick to bound the lattice. Specifically,
a producer can count the size of the set (the length of the string)
while enumerating, and piggyback the size on the last element it
produces to form a bound or “seal”. Once a consumer knows the
set size and has received that many distinct elements (possibly out
of order!), it knows locally—without any coordination—that it has
reached the top of the lattice ⊤ and no new information will be
forthcoming. Physically, our representation of items in a sealed set
is a triple (pos, val, Option<len(𝑆)>), where pos is an index
between 0 and len(𝑆) - 1, val is the value in position pos, and

Invited Paper: Initial Steps Toward a Compiler for Distributed Programs ApPLIED 2023, June 19, 2023, Orlando, FL, USA

1 source_stream(shopping_ssiv) -> [0]lookup_class;
2 source_iter(client_class) -> [1]lookup_class;
3 lookup_class = join()
4 -> map(|(client, (li, class))| ((client, class), li))
5 -> group_by(ssiv_bot, ssiv_merge)
6 -> map(|m| (m, out_addr)) -> dest_sink_serde(out);

Figure 4: Sealed Set of Indexed Values. Dataflow diagram is
identical to Figure 3, except ssiv replaces bp.

len(𝑆) is an optional field—if provided, it is the length of the string.
In Figure 4 we reconsider our example, using a SSIV. The code is
identical to that of Figure 3, but using SSIVs instead of BPs.

5 LOCAL GRAPH TRANSFORMATIONS
In this section we examing some dataflow graph transformations
that, in concert with our lattice-typed shopping carts, allow us
to deliver a fully monotonic, lattice-based implementation of our
program. This in turn enables graph transformations for safely
distributing the program without any coordination.

5.1 Push Group By Through Join
In Figures 3 and 4, we have a chain of operators join -> map

-> group_by, where the join finds matches based on client, the
map simply rearranges the data into (key, val) pairs to conform
to the join API, and the group_by partitions on the pair (client,
class). As mentioned previously, there is one unique class per
client; that is, we have a functional dependency client → class.
That means that the groups are partitioned uniquely by client
alone; the class is simply a deterministic function of the client.
This presents an opportunity for a classic query optimization that
pushes the group_by through the join (e.g. [6, 43]). The resulting
program is shown in Figure 5.

This transformation can improve performance significantly, be-
cause we now look up the client’s ClientClass once per sealed
cart (after the group_by) rather than once per lineitem request.
This was the intended goal of this optimization in the early litera-
ture. Perhaps more interesting for this paper, pushing the group_by
down before the join means that lineitems need not be stored on
the same node as the client_class table, as we will discuss next.

5.2 Decoupling Across a Network
Thanks to the type upgrades of Section 4, our dataflow is now

fully composed of monotonic lattice operators5. Note that lattices
are used throughout the entire shopping cart lifecycle: not just
for cart add and delete requests, but also for checkout, which is a
monotone “threshold test” for ⊤ on the bounded semi-lattice of a
session. This “monotone checkout” trick is the one we borrow from
Conway, et al. [10]. As a result of complete monotonicity, we can
use network edges between any of our operators—say separating
“client” and “server” components—and count on the operators to
provide consistent behavior due to their ACI properties.
5The only potential non-monotonic operator in our example was the group_by. Rela-
tional join is a monotonic latticemorphism over the cross-product domain of its inputs,
and purely functional map functions are lattice morphisms as well with respect to the
set of items passed into them [10].

In particular, notice that the group_by operator maintains the
state for each shopping cart. Having pushed the group_by down
close to the source in our previous transformation, we can now
choose to “cut the flow” by introducing a network edge in one of
two places. The first option is to put the network edges upstream
of the group_by, as shown in Figure 6. This means that clients are
stateless and simply send lineitem requests to the server, which
holds the cart state. This design may be useful for fault tolerance,
as the server may be replicated (Section 5.3) and hence be more
reliable than the client. The second option is that we can put the
network edge downstream of the group_by as in Figure 7. This
results in the cart state being accumulated on the client side of the
network, which may be favorable for concerns of governance or
privacy. Note that the client_class table mixes vendor-centric
information about many clients, and seems reasonable to store at
the server, but the transient state of the cart is kept at the client.
Hence the server only sees carts after checkout; if a client regrets
adding something to their cart and subsequently deletes it before
checkout, only the client will know that. This optimization choice
reflects a nuanced data ownership position that sits between a fully
stateless client implementation, and a local first [25] design in which
no state is stored on servers. Other choices for state partitioning
are possible as well via related transformation choices.

5.3 Server Replication
Another advantage of our type “upgrade” to lattices is that we

can replicate our stateful component for fault tolerance and/or geo-
locality, and have the various replicas broadcast updates amongst
each other to reach eventual consistency, outputting results when-
ever all information becomes available (⊤). In Figure 8 we show a
replicated version of the stateful server in Figure 6. Note that the
figure omits the unmodified “client” logic from line 1 of Figure 6 to
keep the dataflow diagram visible.

Getting from the singleton server code to the replicated server
code requires the application of a number of transformations. Space
prevents us from stepping through them one by one. In brief, the
transformation flow is as follows:

(1) We add logic to tee the shopping carts to a “broadcast” chan-
nel (lines 4-6 of Figure 8).

(2) We add logic to send the broadcast to all server addresses;
each message is replicated for each server via a cartesian
product operator (aka cross_join), and then sent to each
server (line 6-8).

(3) We add logic to receive the broadcast and merge the remote
updates into the local flow via an additional copy of the
(idempotent!) lattice merge via group_by (lines 9-10) and
avoid sending redundant updates via unique6.

6Some readers may note that the first group_by operator is now unnecessary for cor-
rectness; it offers a sub-aggregation, but the second group_by could instead aggregate
individual lineitem requests from clients as well as broadcasts from replicas. It is a
matter of optimization whether the earlier group_by should be elided; this again fits
in the realm of classical query optimization, and would be explored by Hydrolysis in a
full implementation.

ApPLIED 2023, June 19, 2023, Orlando, FL, USA Hellerstein, et al.

1 source_stream(shopping_ssiv)
2 -> group_by(ssiv_bot, ssiv_merge)
3 -> [0]lookup_class;
4 source_iter(client_class) -> [1]lookup_class;
5 lookup_class = join()
6 -> map(|(client, (li, class))| ((client, class), li))
7 -> map(|m| (m, out_addr))
8 -> dest_sink_serde(out);
9

shopping_ssiv group_by

join
0

client_class
1 map map out

Figure 5: Push Group By Through Join

1 source_stream(shopping_ssiv) -> map(|pair| (pair, addr1)) -> dest_sink_serde(reqs_out);
2 source_stream_serde(reqs_in) -> map(|((client, req), _a): ((usize, ReqSsivLattice), _)| (client, req))
3 -> group_by(ssiv_bot, ssiv_merge) -> [0]lookup_class;
4 source_iter(client_class) -> [1]lookup_class;
5 lookup_class = join() -> map(|(client, (li, class))| ((client, class), li)) -> map(|m| (m, out_addr))
6 -> dest_sink_serde(out);
7

shopping_ssiv map reqs_out reqs_in map group_by

join
0

client_class
1 map map out

Figure 6: Decouple Across a Network: Server-Side Cart State

1 source_stream(shopping_ssiv) -> group_by(ssiv_bot, ssiv_merge) -> map(|pair| (pair, addr1)) -> dest_sink_serde(basic_out);
2 source_stream_serde(basic_in) -> map(|((client, cart), _a): ((usize, ReqSsivLattice), _)| (client, cart))
3 -> [0]lookup_class;
4 source_iter(client_class) -> [1]lookup_class;
5 lookup_class = join() -> map(|(client, (li, class))| ((client, class), li)) -> map(|m| (m, out_addr)) -> dest_sink_serde(out);
6

shopping_ssiv group_by map carts_out carts_in map

join
0

client_class
1 map map out

Figure 7: Decouple Across a Network: Client-Side State

6 DISCUSSION AND FUTUREWORK
This paper captures a snapshot of our early explorations of the
potential of dataflow optimization as a vehicle for optimizing dis-
tributed programs. We are increasingly optimistic that a dataflow
kernel like Hydroflow is a useful optimization target for distributed
systems concerns. By incorporating the ACI properties of lattices
into our type system we can reason about allowing network com-
munication to be introduced safely into programs. As illustrated
in Section 4 we are beginning to see the potential for an optimizer
to automatically “upgrade” programs to use lattice types without

changing semantics. This in turn opens up opportunities for decou-
pling and replication of program components across networks.

In Section 5.2 we saw that two different choices of program trans-
formations can address different objectives: in that case a tradeoff
between fault tolerance on one hand, and governance/privacy on
another. This suggests that the objective function and constraints
for optimizing modern distributed programs may be quite a bit
more varied and nuanced than classical query compilation.

This workshop paper is early, and we are eagerly pursuing a num-
ber of directions to go from these concepts and hand-optimizations

Invited Paper: Initial Steps Toward a Compiler for Distributed Programs ApPLIED 2023, June 19, 2023, Orlando, FL, USA

1 source_stream_serde(reqs_in) -> map(|((client, cart), _a): ((usize, ReqSsivLattice), _)| (client, cart))
2 -> group_by(ssiv_bot, ssiv_merge) -> [0]lookup_class;
3 source_iter(client_class) -> [1]lookup_class;
4 lookup_class = join() -> map(|(client, (li, class))| ((client, class), li)) -> tee();
5 lookup_class[clients] -> all_in;
6 lookup_class[broadcast] -> [0]broadcast;
7 source_stream(server_addrs) -> [1]broadcast;
8 broadcast = cross_join() -> dest_sink_serde(broadcast_out);
9 source_stream_serde(broadcast_in) -> map(|(m, _a): (((usize, ClientClass), ReqSsivLattice), _)| m) -> all_in;
10 all_in = merge() -> group_by(ssiv_bot, ssiv_merge) -> unique()
11 -> map(|m| (m, out_addr)) -> dest_sink_serde(out);
12

reqs_in map group_by

join
0

source_iter
1

map tee

cross_join

broadcast / 0

merge

clients

server_addrs 1

broadcast_out broadcast_in

map
group_by unique map out

Figure 8: Replicated Server with Broadcast.

to a rich, automated reality. The agenda encompasses a range of
challenges, including the following.

(1) We need a language for our own use to formalize our rewrite
rules and prove equivalence of rewritten program fragments.

(2) We need to register a large number of transformation rules.
This likely needs to include many classical examples from
relational database query optimization, functional program-
ming and stream query processing. In addition, we expect to
trip across new optimizations that address issues with cloud
deployments.

(3) We need a way for programmers to define multiple objec-
tives they want to optimize, and to express constraints on
the optimization space, e.g. for fault tolerance or governance.
In the vision paper for Hydro [8] we highlight fault tolerance
as a programming “aspect” that developers should be able to
specify independent of their program’s intended semantics.
That vision requires further work, but some seeds are appar-
ent even in our simple example here—namely the ability to
consistently replicate components. Simultaneously maintain-
ing fault tolerance constraints and performance objectives
is an interesting challenge for an optimizer like Hydrolysis.

(4) We need a transformation-based optimizer that can ingest
our rules, objective functions and constraints, and efficiently
search the space of equivalent programs to minimize the
objective function. We are enthusiastic that recent work on
e-graphs could offer an efficient vehicle for our work.

We are optimistic that open-source tools like Egg [41] can make it
possible for us to address these challenges relatively quickly. The
Hydro stack itself is also open source, and we welcome additional
research and development efforts!

ACKNOWLEDGMENTS
This work was supported by unrestricted gifts from Amazon Web
Services, Ant Group, Ericsson, Futurewei, Google, Intel, Meta, Mi-
crosoft, Scotiabank, VMware, Meta, Astronomer, IBM, Intel, Lace-
work, Mohamed Bin Zayed University of Artificial Intelligence,
Nexla, Samsung SDS, Uber and NSF CISE Expeditions Award CCF-
1730628. Hellerstein’s work was done while on partial leave at
Sutter Hill Ventures. This work arose from many discussions with
Hydro teammates Tiemo Bang, Alvin Cheung, David Chu, Natacha
Crooks, Chris Douglas, Justin Jaffray, Lucky Katahanas, Chris Liu,
Rithvik Panchapakesan, and Kaushik Shivakumar.

REFERENCES
[1] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and David Maier. 2017. Blazes:

Coordination Analysis and Placement for Distributed Programs. ACM Trans.
Database Syst. 42, 4, Article 23 (Oct. 2017), 31 pages. https://doi.org/10.1145/
3110214

[2] Peter Alvaro, Neil Conway, Joseph M Hellerstein, and William R Marczak. 2011.
Consistency Analysis in Bloom: a CALM and Collected Approach.. In CIDR.
Citeseer, 249–260.

[3] Peter Alvaro, William R Marczak, Neil Conway, Joseph M Hellerstein, David
Maier, and Russell Sears. 2011. Dedalus: Datalog in time and space. In Datalog
Reloaded: First International Workshop, Datalog 2010, Oxford, UK, March 16-19,
2010. Revised Selected Papers. Springer, 262–281.

[4] Michael Arntzenius and Neelakantan R Krishnaswami. 2016. Datafun: a func-
tional Datalog. In Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming. 214–227.

[5] Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran,
Jim N Gray, Patricia P. Griffiths, W Frank King, Raymond A. Lorie, Paul R.
McJones, James W. Mehl, et al. 1976. System R: Relational approach to database
management. ACM Transactions on Database Systems (TODS) 1, 2 (1976), 97–137.

[6] Surajit Chaudhuri and Kyuseok Shim. 1994. Including group-by in query opti-
mization. In VLDB, Vol. 94. 12–15.

[7] James Cheney, Laura Chiticariu, Wang-Chiew Tan, et al. 2009. Provenance in
databases: Why, how, and where. Foundations and Trends® in Databases 1, 4
(2009), 379–474.

[8] Alvin Cheung, Natacha Crooks, Joseph M Hellerstein, and Matthew Milano. 2021.
New directions in cloud programming. In Conference on Innovative Data Research
(CIDR).

https://doi.org/10.1145/3110214
https://doi.org/10.1145/3110214

ApPLIED 2023, June 19, 2023, Orlando, FL, USA Hellerstein, et al.

[9] Edgar F Codd. 1970. A relational model of data for large shared data banks.
Commun. ACM 13, 6 (1970), 377–387.

[10] Neil Conway, William R Marczak, Peter Alvaro, Joseph M Hellerstein, and David
Maier. 2012. Logic and lattices for distributed programming. In Proceedings of the
Third ACM Symposium on Cloud Computing. 1–14.

[11] Giuseppe DeCandia et al. 2007. Dynamo: Amazon’s highly available key-value
store. ACM SIGOPS operating systems review 41, 6 (2007), 205–220.

[12] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988), 288–323.

[13] Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. ACM Sigmod Record 16,
3 (1987), 249–259.

[14] Goetz Graefe. 1994. Volcano: an extensible and parallel query evaluation system.
IEEE Transactions on Knowledge and Data Engineering 6, 1 (1994), 120–135.

[15] Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data
Eng. Bull. 18, 3 (1995), 19–29.

[16] GD Held, MR Stonebraker, and Eugene Wong. 1975. INGRES: A relational data
base system. In Proceedings of the May 19-22, 1975, national computer conference
and exposition. 409–416.

[17] Pat Helland. 2012. Idempotence is not a medical condition. Commun. ACM 55, 5
(2012), 56–65.

[18] Pat Helland and David Campbell. 2009. Building on quicksand. arXiv preprint
arXiv:0909.1788 (2009).

[19] Joseph M. Hellerstein. 2008. The Data-Centric Gambit. Computing Community
Consortium (CCC) Blog (20 Oct. 2008). https://cccblog.org/2008/10/20/the-data-
centric-gambit/

[20] Joseph M. Hellerstein. 2023. Hydroflow Performance Update. (9 May
2023). https://databeta.wordpress.com/2023/05/09/hydroflow-performance-
update-whoosh/

[21] Joseph M. Hellerstein and Peter Alvaro. 2020. Keeping CALM: When Distributed
Consistency is Easy. Commun. ACM 63, 9 (Aug. 2020), 72–81. https://doi.org/10.
1145/3369736

[22] Joseph M Hellerstein and Peter Alvaro. 2020. Keeping CALM: when distributed
consistency is easy. Commun. ACM 63, 9 (2020), 72–81.

[23] Joseph M. Hellerstein, Lucky Katahanas, and Mingwei Samuel. 2023. The Hy-
droflow Book. https://hydro-project.github.io/hydroflow/book/, Last accessed
on 2023-04-03.

[24] Martin Kleppmann and Alastair R Beresford. 2018. Automerge: Real-time data
sync between edge devices. In 1st UK Mobile, Wearable and Ubiquitous Systems Re-
search Symposium (MobiUK 2018). https://mobiuk. org/abstract/S4-P5-Kleppmann-
Automerge. pdf. 101–105.

[25] Martin Kleppmann, Adam Wiggins, Peter Van Hardenberg, and Mark Mc-
Granaghan. 2019. Local-first software: you own your data, in spite of the cloud.
In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. 154–178.

[26] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek.
2000. The Click modular router. ACM Transactions on Computer Systems (TOCS)
18, 3 (2000), 263–297.

[27] Lindsey Kuper and Ryan R Newton. 2013. LVars: lattice-based data structures for
deterministic parallelism. In Proceedings of the 2nd ACM SIGPLAN workshop on
Functional high-performance computing. 71–84.

[28] Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, and Joseph M Heller-
stein. 2022. Katara: synthesizing CRDTs with verified lifting. Proceedings of the
ACM on Programming Languages 6, OOPSLA2 (2022), 1349–1377.

[29] Leslie Lamport. 2019. The part-time parliament. In Concurrency: the Works of
Leslie Lamport. 277–317.

[30] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International symposium on code
generation and optimization, 2004. CGO 2004. IEEE, 75–86.

[31] Wes McKinney et al. 2011. pandas: a foundational Python library for data analysis
and statistics. Python for high performance and scientific computing 14, 9 (2011),
1–9.

[32] Christopher Meiklejohn and Peter Van Roy. 2015. Lasp: A language for dis-
tributed, coordination-free programming. In Proceedings of the 17th International
Symposium on Principles and Practice of Declarative Programming. 184–195.

[33] Matthew Milano, Rolph Recto, Tom Magrino, and Andrew C Myers. 2019. A
tour of gallifrey, a language for geodistributed programming. In 3rd Summit on
Advances in Programming Languages (SNAPL 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

[34] Derek G Murray, Frank McSherry, Michael Isard, Rebecca Isaacs, Paul Barham,
and Martin Abadi. 2016. Incremental, iterative data processing with timely
dataflow. Commun. ACM 59, 10 (2016), 75–83.

[35] Greg Nelson and Derek C Oppen. 1980. Fast decision procedures based on
congruence closure. Journal of the ACM (JACM) 27, 2 (1980), 356–364.

[36] Mingwei Samuel. 2021. Hydroflow: A Model and Runtime for Distributed Systems
Programming. Master’s thesis. EECS Department, University of California, Berke-
ley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-201.html

[37] Mingwei Samuel, Justin Jaffray, Shadaj Laddad, Joe Hellerstein, Lucky Katahanas,
Tyler Hou, Alex Rasmussen, David Chu, Conor Power, Amrita Rajan, and Rithvik

Panchapakesan. 2023. Hydroflow. https://github.com/hydro-project/hydroflow/
[38] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. A

comprehensive study of convergent and commutative replicated data types. Ph. D.
Dissertation. Inria–Centre Paris-Rocquencourt; INRIA.

[39] Mark Weiser. 1984. Program slicing. IEEE Transactions on software engineering 4
(1984), 352–357.

[40] Michael Whittaker, Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, Neil
Giridharan, Joseph M. Hellerstein, Heidi Howard, Ion Stoica, and Adriana Szek-
eres. 2021. Scaling Replicated State Machines with Compartmentalization. Proc.
VLDB Endow. 14, 11 (July 2021), 2203–2215. https://doi.org/10.14778/3476249.
3476273

[41] MaxWillsey, Chandrakana Nandi, Yisu RemyWang, Oliver Flatt, Zachary Tatlock,
and Pavel Panchekha. 2021. Egg: Fast and Extensible Equality Saturation. Proc.
ACM Program. Lang. 5, POPL, Article 23 (jan 2021).

[42] Chenggang Wu, Jose M Faleiro, Yihan Lin, and Joseph M Hellerstein. 2019. Anna:
A KVS for Any Scale. IEEE Transactions on Knowledge and Data Engineering 33,
2 (2019), 344–358.

[43] Weipeng P. Yan and Per-Åke Larson. 1995. Eager Aggregation and Lazy Aggre-
gation. In Proceedings of 21th International Conference on Very Large Data Bases.
345–357.

[44] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud 10,
10-10 (2010), 95.

https://cccblog.org/2008/10/20/the-data-centric-gambit/
https://cccblog.org/2008/10/20/the-data-centric-gambit/
https://databeta.wordpress.com/2023/05/09/hydroflow-performance-update-whoosh/
https://databeta.wordpress.com/2023/05/09/hydroflow-performance-update-whoosh/
https://doi.org/10.1145/3369736
https://doi.org/10.1145/3369736
https://hydro-project.github.io/hydroflow/book/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-201.html
https://github.com/hydro-project/hydroflow/
https://doi.org/10.14778/3476249.3476273
https://doi.org/10.14778/3476249.3476273

	Abstract
	1 Introduction
	1.1 Why Dataflow?
	1.2 Hydroflow and Prior Work

	2 Dataflow, Networks, and Lattices
	3 A Classic Scenario: Shopping Carts
	4 Type Upgrades for Shopping Carts
	4.1 Bounded Prefix Lattice (BP)
	4.2 Sealed Set of Indexed Values Lattice (SSIV)

	5 Local Graph Transformations
	5.1 Push Group By Through Join
	5.2 Decoupling Across a Network
	5.3 Server Replication

	6 Discussion and Future Work
	Acknowledgments
	References

