
Optimizing Distributed Protocols withQuery Rewrites
[Technical Report]

DAVID C. Y. CHU, University of California, Berkeley, USA

RITHVIK PANCHAPAKESAN, University of California, Berkeley, USA

SHADAJ LADDAD, University of California, Berkeley, USA

LUCKY E. KATAHANAS, Sutter Hill Ventures, USA

CHRIS LIU, University of California, Berkeley, USA

KAUSHIK SHIVAKUMAR, University of California, Berkeley, USA

NATACHA CROOKS, University of California, Berkeley, USA

JOSEPH M. HELLERSTEIN, University of California, Berkeley, USA and Sutter Hill Ventures, USA

HEIDI HOWARD, Azure Research, Microsoft, UK

Distributed protocols such as 2PC and Paxos lie at the core of many systems in the cloud, but standard

implementations do not scale. New scalable distributed protocols are developed through careful analysis and

rewrites, but this process is ad hoc and error-prone. This paper presents an approach for scaling any distributed

protocol by applying rule-driven rewrites, borrowing from query optimization. Distributed protocol rewrites

entail a new burden: reasoning about spatiotemporal correctness. We leverage order-insensitivity and data

dependency analysis to systematically identify correct coordination-free scaling opportunities. We apply

this analysis to create preconditions and mechanisms for coordination-free decoupling and partitioning, two

fundamental vertical and horizontal scaling techniques. Manual rule-driven applications of decoupling and

partitioning improve the throughput of 2PC by 5× and Paxos by 3×, and match state-of-the-art throughput in

recent work. These results point the way toward automated optimizers for distributed protocols based on

correct-by-construction rewrite rules.

CCS Concepts: • Computing methodologies→ Distributed computing methodologies; • Information
systems → Query optimization.

Additional Key Words and Phrases: Distributed Systems, Query Optimization, Paxos, 2PC, Relational Algebra,

Datalog, Partitioning, Dataflow, Monotonicity

Authors’ addresses: David C. Y. Chu, University of California, Berkeley, USA, thedavidchu@berkeley.edu; Rithvik

Panchapakesan, University of California, Berkeley, USA, rithvik@berkeley.edu; Shadaj Laddad, University of California,

Berkeley, USA, shadaj@berkeley.edu; Lucky E. Katahanas, Sutter Hill Ventures, USA, lucky@shv.com; Chris Liu, University

of California, Berkeley, USA, chris-liu@berkeley.edu; Kaushik Shivakumar, University of California, Berkeley, USA,

kaushiks@berkeley.edu; Natacha Crooks, University of California, Berkeley, USA, ncrooks@berkeley.edu; Joseph M.

Hellerstein, University of California, Berkeley, USA and Sutter Hill Ventures, USA, hellerstein@berkeley.edu; Heidi Howard,

Azure Research, Microsoft, UK, heidi.howard@microsoft.com.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM XXXX-XXXX/2024/2-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: February 2024.

HTTPS://ORCID.ORG/0000-0001-9922-1994
HTTPS://ORCID.ORG/0009-0004-1428-5024
HTTPS://ORCID.ORG/0000-0002-6658-6548
HTTPS://ORCID.ORG/0009-0008-3073-0844
HTTPS://ORCID.ORG/0009-0002-1880-1941
HTTPS://ORCID.ORG/0009-0002-5943-9301
HTTPS://ORCID.ORG/0000-0002-3567-801X
HTTPS://ORCID.ORG/0000-0002-7712-4306
HTTPS://ORCID.ORG/0000-0001-5256-7664
https://orcid.org/0000-0001-9922-1994
https://orcid.org/0009-0004-1428-5024
https://orcid.org/0009-0004-1428-5024
https://orcid.org/0000-0002-6658-6548
https://orcid.org/0009-0008-3073-0844
https://orcid.org/0009-0002-1880-1941
https://orcid.org/0009-0002-5943-9301
https://orcid.org/0000-0002-3567-801X
https://orcid.org/0000-0002-7712-4306
https://orcid.org/0000-0002-7712-4306
https://orcid.org/0000-0001-5256-7664
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 David C. Y. Chu et al.

ACM Reference Format:

David C. Y. Chu, Rithvik Panchapakesan, Shadaj Laddad, Lucky E. Katahanas, Chris Liu, Kaushik Shivakumar,

Natacha Crooks, Joseph M. Hellerstein, and Heidi Howard. 2024. Optimizing Distributed Protocols with Query

Rewrites [Technical Report]. 1, 1 (February 2024), 42 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Promises of better cost and scalability have driven the migration of database systems to the cloud.

Yet, the distributed protocols at the core of these systems, such as 2PC [46] or Paxos [43], are not

designed to scale: when the number of machines grows, overheads often increase and throughput

drops. As such, there has been a wealth of research on developing new, scalable distributed protocols.

Unfortunately, each new design requires careful examination of prior work and new correctness

proofs; the process is ad hoc and often error-prone [2, 35, 51, 53, 57, 62]. Moreover, due to the

heterogeneity of proposed approaches, each new insight is localized to its particular protocol and

cannot easily be composed with other efforts.

This paper offers an alternative approach. Instead of creating new distributed protocols from scratch,

we formalize scalability optimizations into rule-driven rewrites that are correct by construction and

can be applied to any distributed protocol.

To rewrite distributed protocols, we take a page from traditional SQL query optimizations. Prior

work has shown that distributed protocols can be expressed declaratively as sets of queries in

a SQL-like language such as Dedalus [7], which we adopt here. Applying query optimization to

these protocols thus seems like an appealing way forward. Doing so correctly however, requires

care, as the domain of distributed protocols requires optimizer transformations whose correctness

is subtler than classical matters like the associativity and commutativity of join. In particular,

transformations to scale across machines must reason about program equivalence in the face of

changes to spatiotemporal semantics like the order of data arrivals and the location of state.

We focus on applying two fundamental scaling optimizations in this paper: decoupling and par-
titioning, which correspond to vertical and horizontal scaling. We target these two techniques

because (1) they can be generalized across protocols and (2) were recently shown by Whittaker

et al. [63] to achieve state-of-the-art throughput on complex distributed protocols such as Paxos.

While Whittaker’s rewrites are handcrafted specifically for Paxos, our goal is to rigorously define

the general preconditions and mechanics for decoupling and partitioning, so they can be used to

correctly rewrite any distributed protocol.

Decoupling improves scalability by spreading logic across machines to take advantage of additional

physical resources and pipeline parallel computation. Decoupling rewrites data dependencies on

a single node into messages that are sent via asynchronous channels between nodes. Without

coordination, the original timing and ordering of messages cannot be guaranteed once these

channels are introduced. To preserve correctness without introducing coordination, we decouple

sub-components that produce the same responses regardless of message ordering or timing: these

sub-components are order-insensitive. Order-insensitivity is easy to systematically identify in

Dedalus thanks to its relational model: Dedalus programs are an (unordered) set of queries over

(unordered) relations, so the logic for ordering—time, causality, log sequence numbers—is the

exception, not the norm, and easy to identify. By avoiding decoupling the logic that explicitly relies

on order, we can decouple the remaining order-insensitive sub-components without coordination.

, Vol. 1, No. 1, Article . Publication date: February 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 3

Partitioning improves scalability by spreading state across machines and parallelizing compute, a

technique widely used in query processing [22, 25]. Textbook discussions focus on partitioning data

to satisfy a single query operator like join or group-by. If the next operator downstream requires a

different partitioning, then data must be forwarded or “shuffled” across the network. We would

like to partition data in such a way that entire sub-programs can compute on local data without

reshuffling. We leverage relational techniques like functional dependency analysis to find data

partitioning schemes that can allow as much code as possible to work on local partitions without

reshuffling between operators. This is a benefit of choosing to express distributed protocols in the

relational model: functional dependencies are far easier to identify in a relational language than a

procedural language.

We demonstrate the generality of our optimizations by methodically applying rewrites to three

seminal distributed protocols: voting, 2PC, and Paxos. We specifically target Paxos [59] as it is a

protocol with many distributed invariants and it is challenging to verify [31, 66, 67]. The throughput

of the optimized voting, 2PC, and Paxos protocols scale by 2×, 5×, and 3× respectively, a scale-up

factor that matches the performance of ad hoc rewrites [63] when the underlying language of each

implementation is accounted for and achieves state-of-the-art performance for Paxos.

Our correctness arguments focus on the equivalence of localized, “peephole” optimizations of

dataflow graphs. Traditional protocol optimizations often make wholesale modifications to protocol

logic and therefore require holistic reasoning to prove correctness. We take a different approach.

Our rewrite rules modify existing programs with small local changes, each of which is proven to

preserve semantics. As a result, each rewritten subprogram is provably indistinguishable to an

observer (or client) from the original. We do not need to prove that holistic protocol invariants are

preserved—they must be. Moreover, because rewrites are local and preserve semantics, they can be

composed to produce protocols with multiple optimizations, as we demonstrate in Section 5.2.

Our local-first approach naturally has a potential cost: the space of protocol optimization is limited

by design as it treats the initial implementation as “law”. It cannot distinguish between true protocol

invariants and implementation artifacts, limiting the space of potential optimizations. Nonetheless,

we find that, when applying our results to seminal distributed system algorithms, we easily match

the results of their (manually proven) optimized implementations.

In summary, we make the following contributions:

(1) We present the preconditions and mechanisms for applying multiple correct-by-construction

rewrites of two fundamental transformations: decoupling and partitioning.

(2) We demonstrate the application of these rule-driven rewrites by manually applying them to

complex distributed protocols such as Paxos.

(3) We evaluate our optimized programs and observe 2− 5× improvement in throughput across pro-

tocols with state-of-the-art throughput in Paxos, validating the role of correct-by-construction

rewrites for distributed protocols.

2 BACKGROUND
Our contributions begin with the program rewriting rules in Section 3. Naturally, the correctness of

those rules depends on the details of the language we are rewriting, Dedalus. Hence in this section

we pause to review the syntax and semantics of Dedalus, as well as additional terminology we will

use in subsequent discussion.

, Vol. 1, No. 1, Article . Publication date: February 2024.

4 David C. Y. Chu et al.

Fig. 1. Dataflow diagram for a verifiably-replicated KVS. Edges are labeled with corresponding line numbers;
dashed edges represent asynchronous channels. Each gray bounding box represents a node; select nodes’
dataflows are presented.

Dedalus is a spatiotemporal logic for distributed systems [7]. As we will see in Section 2.3, Dedalus

captures specifications for the state, computation and messages of a set of distributed nodes over
time. Each node (a.k.a. machine, thread) has its own explicit “clock” that marks out local time

sequentially. Dedalus (and hence our work here) assumes a standard asynchronous model in which

messages between correct nodes can be arbitrarily delayed and reordered, but must eventually be

delivered after an infinite amount of time [24].

Dedalus is a dialect of Datalog
¬
, which is itself a SQL-like declarative logic language that supports

familiar constructs like joins, selection, and projection, with additional support for recursion,

aggregation (akin to GROUP BY in SQL), and negation (NOT IN). Unlike SQL, Datalog
¬
has set

semantics.

2.1 Running example
As a running example, we focus on a verifiably replicated key-value store with hash-conflict

detection inspired by [56]. We use this example to explain the core concepts of Dedalus and to

illustrate in Sections 3 and 4 how our transformations can be applied. In Section 5 we turn our

attention to more complex and realistic examples, including Paxos and 2PC. Figure 1 provides a

high level diagram of the example; we explain the corresponding Dedalus code (Listings 1 and 2) in

the next subsection.

The running example consists of a leader node andmultiple storage nodes and allows clients to write

to storage nodes, with the ability to detect concurrent writes. The leader node cryptographically

signs each client message and broadcasts both the message and signature to each storage node. Each

storage node then stores the message and the hash of the message in a local table if the signature is

valid. The storage nodes also calculate the number of unique existing messages in the table whose

hash collides with the hash of the message. The storage nodes then sign the original message and

respond to the leader node. Upon collecting a response from each storage node, if the number of

hash collisions is consistent across responses, the leader creates a certificate of all the responses and

replies to the client. If any two storage nodes report differing numbers of hash collisions, the leader

notifies the client of the inconsistency. We use this simple protocol for illustration, and present

more complete protocols—2PC and Paxos—in Section 5.

2.2 Datalog¬

We now introduce the necessary Datalog
¬
terminology, copying code snippets from Listings 1

and 2 to introduce key concepts.

A Datalog
¬ program is a set of rules in no particular order. A rule 𝜑 is like a view definition

in SQL, defining a virtual relation via a query over other relations. A literal in a rule is either a

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 5

relation, a negated relation, or a boolean expression. A rule consists of a deduction operator :−
defining a single left-hand-side relation (the head of the rule) via a list of right-hand-side literals

(the body).

Consider Line 3 of Listing 2, which computes hash collisions:

3 collisions(val2,hashed,l,t) :− toStorage(val1,leaderSig,l,t), hash(val1,hashed),
hashset(hashed,val2,l,t)

In this example, the head literal is collisions, and the body literals are toStorage, hash, and
hashset. Each body literal can be a (possibly negated) relation 𝑟 consisting of multiple attributes
𝐴, or a boolean expression; the head literal must be a relation. For example, hashset is a relation
with four attributes representing the hash, message value, location, and time in that order. Each

attribute must be bound to a constant or variable; attributes in the head literal can also be bound

to aggregation functions. In the example above, the attribute representing the message value in

hashset is bound to the variable val2. Positive literals in the body of the rule are joined together;

negative literals are anti-joined (SQL’s NOT IN). Attributes bound to the same variable form an

equality predicate—in the rule above, the first attribute of toStorage must be equal to the first

attribute of hash since they are both bound to val1; this specifies an equijoin of those two relations.

Two positive literals in the same body that share no common variables form a cross-product.

Multiple rules may have the same head relation; the head relation is defined as the disjunction

(SQL UNION) of the rule bodies.

Note how library functions like hash are simply modeled as infinite relations of the form

(input, output). Because these are infinite relations, they can only be used in a rule body if

the input variables are bound to another attribute—this corresponds to “lazily evaluating” the

function only for that attribute’s finite set of values. For example, the relation hash contains the
fact (x, y) if and only if hash(x) equals y.

Relations 𝑟 are populated with facts 𝑓 , which are tuples of values, one for each attribute of 𝑟 . We

will use the syntax 𝜋𝐴 (𝑓) to project 𝑓 to the value of attribute 𝐴. Relations with facts stored prior

to execution are traditionally called extensional relations, and the set of extensional relations is

called the EDB. Derived relations, defined in the heads of rules, are traditionally called intensional
relations, and the set of them is called the IDB. Boolean operators and library functions like hash
have pre-defined content, hence they are (infinite) EDB relations.

Datalog
¬
also supports negation and aggregations. An example of aggregation is seen in Listing 2

Line 4, which counts the number of hash collisions with the count aggregation:
4 numCollisions(count<val>,hashed,l,t) :− collisions(val,hashed,l,t)

In this syntax, attributes that appear outside of aggregate functions form the GROUP BY list; attributes
inside the functions are aggregated. In order to compute aggregation in any rule 𝜑 , we must first

compute the full content of all relations 𝑟 in the body of 𝜑 . Negation works similarly: if we have a

literal !r(x) in the body, we can only check that r is empty after we’re sure we have computed the

full contents of r(x). We refer the reader to [1, 48] for further reading on aggregation and negation.

2.3 Dedalus
Dedalus programs are legal Datalog

¬
programs, constrained to adhere to three additional rules on

the syntax.

(1) Space and Time in Schema: All IDB relations must contain two attributes at their far right:

location 𝐿 and time 𝑇 . Together, these attributes model where and when a fact exists in the system.

, Vol. 1, No. 1, Article . Publication date: February 2024.

6 David C. Y. Chu et al.

For example, in the rule on Line 3 discussed above, a toStorage message𝑚 and signature 𝑠𝑖𝑔 that

arrives at time 𝑡 at a node with location 𝑎𝑑𝑑𝑟 is represented as a fact toStorage(𝑚, 𝑠𝑖𝑔, 𝑎𝑑𝑑𝑟, 𝑡).

(2) Matching Space-Time Variables in Body: The location and time attributes in all body literals
must be bound to the same variables 𝑙 and 𝑡 , respectively. This models the physical property that

two facts can be joined only if they exist at the same time and location. In Line 3, a toStorage fact
that appears on node 𝑙 at time 𝑡 can only match with hashset facts that are also on 𝑙 at time 𝑡 .

We model library functions like hash as relations that are known (replicated) across all nodes 𝑛 and

unchanging across all timesteps 𝑡 . Hence we elide 𝐿 and 𝑇 from function and expression literals as

a matter of syntax sugar, and assume they can join with other literals at all locations and times.

(3) Space and Time Constraints in Head: The location and time variables in the head of rules

must obey certain syntactic constraints, which ensure that the “derived” locations and times

correspond to physical reality. These constraints differ across three types of rules. Synchronous
(“deductive” [7]) rules are captured by having the same time variable in the head literal as in the

body literals. Having these derivations assigned to the same timestep 𝑡 is only physically possible

on a single node, so the location in the head of a synchronous rule must match the body as well.

Sequential (“inductive” [7]) rules are captured by having the head literal’s time be the successor

(t+1) of the body literals’ times t. Again, sequentiality can only be guaranteed physically on a single

node in an asychronous system, so the location of the head in a sequential rule must match the

body. Asynchronous rules capture message passing between nodes, by having different time and

location variables in the head than the body. In an asynchronous system, messages are delivered at

an arbitrary time in the future. We discuss how this is modeled next.

In an asynchronous rule 𝜑 , the location attribute of the head and body relations in 𝜑 are bound to

different variables; a different location in the head of 𝜑 indicates the arrival of the fact on a new

node. Asynchronous rules are constrained to capture non-deterministic delay by including a body

literal for the built-in delay relation (a.k.a. choose [7], chosen [4]), a non-deterministic function

that independently maps each head fact to an arrival time. The logical formalism of the delay
function is discussed in [4]; for our purposes it is sufficient to know that delay is constrained to

reflect Lamport’s “happens-before” relation for each fact. That is, a fact sent at time 𝑡 on 𝑙 arrives

at time 𝑡 ′ on 𝑙 ′, where 𝑡 < 𝑡 ′. We focus on Listing 2, Line 5 from our running example.

5 fromStorage(l,sig,val,collCnt,l',t') :− toStorage(val,leaderSig,l,t),
hash(val,hashed), numCollisions(collCnt,hashed,l,t), sign(val,sig),
leader(l'), delay((sig,val,collCnt,l,t,l'),t')

This is an asynchronous rule where a storage node 𝑙 sends the count of hash collisions for each

distinct storage request back to the leader 𝑙 ′. Note the l' and t' in the head literal: they are derived

from the body literals leader (an EDB relation storing the leader address) and the built-in delay.
Note also how the first attribute of delay (the function “input”) is a tuple of variables that, together,

distinguish each individual head fact. This allows delay to choose a different t' for every head

fact [4]. The l in the head literal represents the storage node’s address and is used by the leader to

count the number of votes; it is unrelated to asynchrony.

So far, we have only talked about facts that exist at a point in time 𝑡 . State change in Dedalus is

modeled through the existence or non-existence of facts across time. Persistence rules like the
one below from Line 2 of Listing 2 ensure, inductively, that facts in hashset that exist at time 𝑡

exist at time 𝑡 + 1. Relations with persistence rules—like hashset—are persisted.
2 hashset(hashed,val,l,t') :− hashset(hashed,val,l,t), t'=t+1

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 7

Listing 1. Hashset leader in Dedalus.
1 signed(val,leaderSig,l,t) :− in(val,l,t), sign(val,leaderSig)
2 toStorage(val,leaderSig,l',t') :− signed(val,leaderSig,l,t), storageNodes(l'),

delay((val,leaderSig,l,t,l'),t')
3 acks(src,sig,val,collCnt,l,t) :− fromStorage(src,sig,val,collCnt,l,t)
4 acks(src,sig,val,collCnt,l,t') :− acks(src,sig,val,collCnt,l,t), t'=t+1
5 numACKs(count<src>,val,collCnt,l,t) :− acks(src,sig,val,collCnt,l,t)
6 certs(cert<sig>,val,collCnt,l,t) :− acks(src,sig,val,collCnt,l,t)
7 outCert(cer,val,collCnt,hashed,l',t') :− certs(ce,val,collCnt,l,t),

numACKs(cnt,val,collCnt,l,t), numNodes(cnt), client(l'),
delay((cer,val,collCnt,hashed,l,t,l'),t')

8 outInconsistent(val,l',t') :− acks(src1,sig1,val,collCnt1,l,t),
acks(src2,sig2,val,collCnt2,l,t), collCnt1 != collCnt2, client(l'),
delay((val,l,t,l'),t')

2.4 Further terminology
We introduce some additional terminology to capture the rewrites we wish to perform on Dedalus

programs.

We assume that Dedalus programs are composed of separate components 𝐶 , each with a non-

empty set of rules 𝜑 . In our running example, Listings 1 and 2 define the leader component and

the storage component. All the rules of a component are executed together on a single physical

node. Many instances of a component may be deployed, each on a different node. The node at

location addr only has access to facts 𝑓 with 𝜋𝐿 (𝑓) = addr, modeling the shared-nothing property

of distributed systems.

We define a rule’s references as the IDB relations in its body; a component references the set

of relations referenced by its rules. For example, the storage component in Listing 2 references

toStorage, hashset, collisions, and numCollisions. A IDB relation is an input of a component

𝐶 if it is referenced in 𝐶 and it is not in the head of any rules of 𝐶; toStorage is an input to the

storage component. A relation that is not referenced in 𝐶 but appears in the head of rules in 𝐶 is

an output of 𝐶; fromStorage is an output of the storage component. Note that this formulation

explicitly allows a component to have multiple inputs and multiple outputs. Inputs and outputs of

the component correspond to asynchronous input and output channels of each node.

Our discussion so far has been at the level of rules; we will also need to reason about individual

facts. A proof tree [1] can be constructed for each IDB fact 𝑓 , where 𝑓 lies at the root of the tree,

each leaf is an EDB or input fact, and each internal node is an IDB fact derived from its children via

a single rule. Below we see a proof tree for one fact in toStorage:

toStorage('hi', 0x7465, b.b.us:5678, 9)

signed('hi', 0x7465, a.b.us:5678, 6)

in('hi', a.b.us:5678, 6) sign('hi', 0x7465)

storageNodes(b.b.us:5678) delay(('hi', 0x7465, a.b.us:5678, 6, b.b.us:5678), 9)

Line 2

Line 1

2.5 Correctness
This paper transforms single-node Dedalus components into “equivalent” multi-component, multi-

node Dedalus programs; the transformations can be composed to scale entire distributed protocols.

, Vol. 1, No. 1, Article . Publication date: February 2024.

8 David C. Y. Chu et al.

Listing 2. Hashset storage node in Dedalus.
1 hashset(hashed,val,l,t') :− toStorage(val,leaderSig,l,t), hash(val,hashed),

verify(val,leaderSig), t'=t+1
2 hashset(hashed,val,l,t') :− hashset(hashed,val,l,t), t'=t+1
3 collisions(val2,hashed,l,t) :− toStorage(val1,leaderSig,l,t), hash(val1,hashed),

hashset(hashed,val2,l,t)
4 numCollisions(count<val>,hashed,l,t) :− collisions(val,hashed,l,t)
5 fromStorage(l,sig,val,collCnt,l',t') :− toStorage(val,leaderSig,l,t),

hash(val,hashed), numCollisions(collCnt,hashed,l,t), sign(val,sig),
leader(l'), delay((sig,val,collCnt,l,t,l'),t')

For equivalence, we want a definition that satisfies any client (or observer) of the input/output

channels of the original program. To this end we employ equivalence of concurrent histories as

defined for linearizability [33], the gold standard in distributed systems.

We assume that a history 𝐻 can be constructed from any run of a given Dedalus program 𝑃 .

Linearizability traditionally expects every program to include a specification that defines what

histories are "legal". We make no such assumption and we consider any possible history generated

by the unoptimized program 𝑃 to define the specification. As such, the optimized program 𝑃 ′
is

linearizable if any run of 𝑃 ′
generates the same output facts with the same timestamps as some run

of 𝑃 .

Our rewrites are safe over protocols that assume the following fault model: an asynchronous

network (messages between correct nodes will eventually be delivered) where up to 𝑓 nodes can

suffer from general omission failures [52] (they may fail to send or receive some messages). After

optimizing, one original node 𝑛 may be replaced by multiple nodes 𝑛1, 𝑛2, . . .; the failure of any of

nodes 𝑛𝑖 corresponds to a partial failure of the original node 𝑛, which is equivalent to the failure of

𝑛 under general omission.

Full proofs, preconditions, and mechanisms for the rewrites described in Sections 3 and 4 can be

found in Appendix A.

3 DECOUPLING
Decoupling partitions code; it takes a Dedalus component running on a single node, and breaks it

into multiple components that can run in parallel across many nodes. Decoupling can be used to

alleviate single-node bottlenecks by scaling up available resources. Decoupling can also introduce

pipeline parallelism: if one rule produces facts in its head that another rule consumes in its body,

decoupling those rules across two components can allow the producer and consumer to run in

parallel.

Because Dedalus is a language of unordered rules, decoupling a component is syntactically easy:

we simply partition the component’s ruleset into multiple subsets, and assign each subset to a

different node. The result is syntactically legal, but the correctness story is not quite that simple. To

decouple and retain the original program semantics, we must address classic distributed systems

challenges: how to get the right data to the right nodes (space), and how to ensure that introducing

asynchronous messaging between nodes does not affect correctness (time).

In this section we step through a progression of decoupling scenarios, and introduce analyses and

rewrites that provably address our concerns regarding space and time. Throughout, our goal is to

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 9

Fig. 2. Running example after mutually independent decoupling.

avoid introducing any coordination—i.e. extra messages beyond the data passed between rules in

the original program.

General Construction for Decoupling: In all our scenarios we will consider a component 𝐶 at

network location addr, consisting of a set of rules 𝜑 . We will, without loss of generality, decouple𝐶

into two components: 𝐶1 = 𝜑
1
, which stays at location addr, and 𝐶2 = 𝜑

2
which is placed at a new

location addr2. The rulesets of the two new components partition the original ruleset: 𝜑
1
∩ 𝜑

2
= ∅

and 𝜑
1
∪ 𝜑

2
⊇ 𝜑 . Note that we may add new rules during decoupling to achieve equivalence.

3.1 Mutually Independent Decoupling
Intuitively, if the component 𝐶1 never communicates with 𝐶2, then running them on two separate

nodes should not change program semantics. We simply need to ensure that inputs from other

components are sent to addr or addr2 appropriately.

Consider the component defined in Listing 1. There is no dataflow between the relations in Lines 1

and 2 and the relations in the remainder of the rules in the component. One possible decoupling

would place Lines 1 and 2 on𝐶1, the remainder of Listing 1 on𝐶2, and reroute fromStoragemessages

from 𝐶1 to 𝐶2, as seen in Figure 2.

We now define a precondition that determines when this rewrite can be applied:

Precondition: 𝐶1 and 𝐶2 are mutually independent.

Recall the definition of references from Section 2.4: a component 𝐶 references IDB relation 𝑟 if

some rule 𝜑 ∈ 𝐶 has 𝑟 in its body. A component 𝐶1 is independent of component 𝐶2 if (a) the two

components reference mutually exclusive sets of relations, and (b)𝐶1 does not reference the outputs

of𝐶2. Note that this property is asymmetric:𝐶2 may still be dependent upon𝐶1 by referencing𝐶1’s

outputs. Hence our precondition requires mutual independence.

Rewrite: Redirection. Because 𝐶2 has changed address, we need to direct facts from any relation

𝑟 referenced by 𝐶2 to addr2. We simply add a “redirection” EDB relation to the body of each rule

whose head is referenced in 𝐶2, which maps addr to addr2, and any other address to itself. For our

example above, we need to ensure that fromStorage is sent to addr2. To enforce this we rewrite

Line 5 of Listing 2 as follows (note variable l'' in the head, and forward in the body):

5 fromStorage(l,sig,val,collCnt,l'',t') :− toStorage(val,leaderSig,l,t),
hash(val,hashed), numCollisions(collCnt,hashed,l,t), sign(val,sig),
leader(l'), forward(l',l'') delay((l,sig,val,collCnt,l,t,l''),t')

3.2 Monotonic Decoupling
Now consider a scenario in which 𝐶1 and 𝐶2 are not mutually independent. If 𝐶2 is dependent

on 𝐶1, decoupling changes the dataflow from 𝐶1 to 𝐶2 to traverse asynchronous channels. After

, Vol. 1, No. 1, Article . Publication date: February 2024.

10 David C. Y. Chu et al.

Fig. 3. Running example after monotonic decoupling.

decoupling, facts that co-occurred in 𝐶 may be spread across time in 𝐶2; similarly, two facts that

were ordered or timed in a particular way in 𝐶 may be ordered or timed differently in 𝐶2. Without

coordination, very little can be guaranteed about the behavior of a component after the ordering or

timing of facts is modified.

Fortunately, the CALM Theorem [32] tells us that monotonic components eventually produce the

same output independent of any network delays, including changes to co-occurrence, ordering, or

timing of inputs. A component 𝐶2 is monotonic if increasing its input set from 𝐼 to 𝐼 ′ ⊇ 𝐼 implies

that the output set 𝐶2 (𝐼 ′) ⊇ 𝐶2 (𝐼)1; in other words, each referenced relation and output of 𝐶2 will

monotonically accumulate a growing set of facts as inputs are received over time, independent

of the order in which they were received. The CALM Theorem ensures that if 𝐶2 is shown to be

monotonic, then we can safely decouple 𝐶1 and 𝐶2 without any coordination.

In our running example, the leader (Listing 1) is responsible for both creating certificates from a set of

signatures (Lines 5 to 7) and checking for inconsistent ACKs (Line 8). Since ACKs are persisted, once

a pair is inconsistent, they will always be inconsistent; Line 8 is monotonic. Monotonic decoupling

of Line 8 allows us to offload inconsistency-checking from a single leader to the decoupled “proxy”

as highlighted in yellow in Figure 3.

Precondition: 𝐶1 is independent of 𝐶2, and 𝐶2 ismonotonic.

Monotonicity of a Datalog
¬
(hence Dedalus) component is undecidable [40], but effective conser-

vative tests for monotonicity are well known. A simple sufficient condition for monotonicity is

to ensure that (a) 𝐶2’s input relations are persisted, and (b) 𝐶2’s rules do not contain negation or

aggregation. In Appendix A.2 we relax each of these checks to be more permissive.

Rewrite: Redirection With Persistence. Note that in this case we may have relations 𝑟 that

are outputs of 𝐶1 and inputs to 𝐶2. We use the same rewrite as in the previous section with one

addition: we add a persistence rule to 𝐶2 for each 𝑟 that is in the output of 𝐶1 and the input of 𝐶2,

guaranteeing that all inputs of 𝐶2 remain persisted.

The alert reader may notice performance concerns. First, 𝐶1 may redundantly resend persistently-

derived facts to 𝐶2 each tick, even though 𝐶2 is persistently storing them anyway via the rewrite.

Second, 𝐶2 is required to persist facts indefinitely, potentially long after they are needed. Solutions

to this problem were explored in prior work [17] and can be incorporated here as well without

affecting semantics.

1
There is some abuse of notation here treating𝐶2 as a function from one set of facts to to another, since the facts may be in

different relations. A more proper definition would be based on sets of multiple relations: input and EDB relations at the

input, IDB relations at the output.

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 11

Fig. 4. Running example after functional decoupling.

3.3 Functional Decoupling
Consider a component that behaves like a “map” operator for a pure function 𝐹 on individual facts:

for each fact 𝑓 it receives as input, it outputs 𝐹 (𝑓). Surely these should be easy to decouple! Map

operators are monotonic (their output set grows with their input set), but they are also independent

per fact—each output is determined only by its corresponding input, and in particular is not affected

by previous inputs. This property allows us to forgo the persistence rules we introduce for more

general monotonic decoupling; we refer to this special case of monotonic decoupling as functional
decoupling.

Consider again Lines 1 and 2 in Listing 1. Note that Line 1 works like a function on one input: each

fact from in results in an independent signed fact in signed. Hence we can decouple further, placing

Line 1 on one node and Line 2 on another, forwarding signed values to toStorage. Intuitively, this
decoupling does not change program semantics because Line 2 simply sends messages, regardless

of which messages have come before: it behaves like pure functions.

Precondition: 𝐶1 is independent of 𝐶2, and 𝐶2 is functional—that is, (1) it does not contain
aggregation or negation, and (2) each rule body in 𝐶2 has at most one IDB relation.

Rewrite: Redirection. We reuse the rewrite from Section 3.1.

As a side note, recall that persisted relations in Dedalus are by definition IDB relations. Hence

Precondition (2) prevents 𝐶2 from joining current inputs (an IDB relation) with previous persisted

data (another IDB relation)! In effect, persistence rules are irrelevant to the output of a functional

component, rendering functional components effectively “stateless”.

4 PARTITIONING
Decoupling is the distribution of logic across nodes; partitioning (or “sharding”) is the distribution

of data. By using a relational language like Dedalus, we can scale protocols using a variety of

techniques that query optimizers use to maximize partitioning without excessive “repartitioning”

(a.k.a. “shuffling”) of data at runtime.

Unlike decoupling, which introduces new components, partitioning introduces additional nodes

on which to run instances of each component. Therefore, each fact may be rerouted to any of the

many nodes, depending on the partitioning scheme. Because each rule still executes locally on each

node, we must reason about changing the location of facts.

We first need to define partitioning schemes, and what it means for a partitioning to be correct

for a set of rules. Much of this can be borrowed from recent theoretical literature [8, 27, 28, 55].

A partitioning scheme is described by a distribution policy 𝐷 (𝑓) that outputs some node address

addr_i for any fact 𝑓 . A partitioning preserves the semantics of the rules in a component if it is

parallel disjoint correct [55]. Intuitively, this property says that the body facts that need to be

, Vol. 1, No. 1, Article . Publication date: February 2024.

12 David C. Y. Chu et al.

Fig. 5. Running example after partitioning with co-hashing.

colocated remain colocated after partitioning. We adapt the parallel disjoint correctness definitions

to the context of Dedalus as follows:

Definition 4.1. A distribution policy 𝐷 over component 𝐶 is parallel disjoint correct if for any fact

𝑓 of 𝐶 , for any two facts 𝑓1, 𝑓2 in the proof tree of 𝑓 , 𝐷 (𝑓1) = 𝐷 (𝑓2).

Ideally we can find a single distribution policy that is parallel disjoint correct over the component

in question. To do so, we need to partition each relation based on the set of attributes used for

joining or grouping the relation in the component’s rules. Such distribution policies are said to

satisfy the co-hashing constraint (Section 4.1). Unfortunately, it is common for a single relation to

be referenced in two rules with different join or grouping attributes. In some cases, dependency

analysis can still find a distribution policy that will be correct (Section 4.2). If no parallel disjoint

correct distribution policy can be found, we can resort to partial partitioning (Section 4.3), which

replicates facts across multiple nodes.

To discuss partitioning rewrites on generic Dedalus programs, we consider without loss of generality

a component 𝐶 with a set of rules 𝜑 at network location addr. We will partition the data at addr
across a set of new locations addr1, addr2, etc, each executing the same rules 𝜑 .

4.1 Co-hashing
We begin with co-hashing [28, 55], a well studied constraint that avoids repartitioning data. Our

goal is to co-locate facts that need to be combined because they (a) share a join key, (b) share a

group key, or (c) share an antijoin key.

Consider two relations 𝑟1 and 𝑟2 that appear in the body of a rule 𝜑 , with matching variables bound

to attributes 𝐴 in 𝑟1 and corresponding attributes 𝐵 in 𝑟2. Henceforth we will say that 𝑟1 and 𝑟2
“share keys” on attributes 𝐴 and 𝐵. Co-hashing states that if 𝑟1 and 𝑟2 share keys on attributes 𝐴

and 𝐵, then all facts from 𝑟1 and 𝑟2 with the same values for 𝐴 and 𝐵 must be routed to the same

partition.

Note that even if co-hashing is satisfied for individual rules, 𝑟 might need to be repartitioned

between the rules, because a relation 𝑟 might share keys with another relation on attributes𝐴 in one

rule and 𝐴′
in another. To avoid repartitioning, we would like the distribution policy to partition

consistently with co-hashing in every rule of a component.

Consider Line 8 of Listing 1, assuming it has already been decoupled. Inconsistencies between ACKs

are detected on a per-value basis and can be partitioned over the attribute bound to the variable

val; this is evidenced by the fact that the relation acks is always joined with other IDB relations

using the same attribute (bound to val). Line 2 and Listing 2 Line 5 are similarly partitionable by

value, as seen in Figure 5.

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 13

Fig. 6. Running example after partitioning with dependencies.

Formally, a distribution policy 𝐷 partitions relation 𝑟 by attribute 𝐴 if for any pair of facts 𝑓1, 𝑓2
in 𝑟 , 𝜋𝐴 (𝑓1) = 𝜋𝐴 (𝑓2) implies 𝐷 (𝑓1) = 𝐷 (𝑓2). Facts are distributed according to their partitioning

attributes.

𝐷 partitions consistently with co-hashing if for any pair of referenced relations 𝑟1, 𝑟2 in rule

𝜑 of 𝐶 , 𝑟1 and 𝑟2 share keys on attribute lists 𝐴1 and 𝐴2 respectively, such that for any pair of

facts 𝑓1 ∈ 𝑟1, 𝑓2 ∈ 𝑟2, 𝜋𝐴1
(𝑓1) = 𝜋𝐴2

(𝑓2) implies 𝐷 (𝑓1) = 𝐷 (𝑓2). Facts will be successfully joined,

aggregated, or negated after partitioning because they are sent to the same locations.

Precondition: There exists a distribution policy 𝐷 for relations referenced by component 𝐶 that

partitions consistently with co-hashing.

We can discover candidate distribution policies through a static analysis of the join and grouping

attributes in every rule 𝜑 in 𝐶 .

Rewrite: Redirection With Partitioning. We are given a distribution policy 𝐷 from the precon-

dition. For any rules in𝐶′
whose head is referenced in𝐶 , we modify the “redirection” relation such

that messages 𝑓 sent to 𝐶 at addr are instead sent to the appropriate node of 𝐶 at 𝐷 (𝑓).

4.2 Dependencies
By analyzing Dedalus rules, we can identify dependencies between attributes that (1) strengthen

partitioning by showing that partitioning on one attribute can imply partitioning on another, and

(2) loosen the co-hashing constraint.

For example, consider a relation 𝑟 that contains both an original string attribute Str and its

uppercased value in attribute UpStr. The functional dependency (FD) Str → UpStr strengthens
partitioning: partitioning on UpStr implies partitioning on Str. Formally, relation 𝑟 has a functional
dependency 𝑔 : 𝐴 → 𝐵 on attribute lists 𝐴, 𝐵 if for all facts 𝑓 ∈ 𝑟 , 𝜋𝐵 (𝑓) = 𝑔(𝜋𝐴 (𝑓)) for some

function 𝑔. That is, the values 𝐴 in the domain of 𝑔 determine the values in the range, 𝐵. This

reasoning allows us to satisfy multiple co-hashing constraints simultaneously.

Now consider the following joins in the body of a rule: p(str), r(str, upStr), q(upStr). Co-
hashing would not allow partitioning, because 𝑝 and 𝑞 do not share keys over their attributes.

However, if we know the functional dependency Str → UpStr over 𝑟 , then we can partition 𝑝, 𝑞, 𝑟

on the uppercase values of the strings and still avoid reshuffling. This co-partition dependency
(CD) between the attributes of 𝑝 and 𝑞 loosens the co-hashing constraint beyond sharing keys.

Formally, relations 𝑟1 and 𝑟2 have a co-partition dependency 𝑔 : 𝐴 ↩→ 𝐵 on attribute lists 𝐴, 𝐵 if for

all proof trees containing facts 𝑓1 ∈ 𝑟1, 𝑓2 ∈ 𝑟2, we have 𝜋𝐵 (𝑓1) = 𝑔(𝜋𝐴 (𝑓2)) for some function 𝑔. If

we partition by 𝐵 (the range of 𝑔) we also successfully partition by 𝐴 (the domain of 𝑔).

, Vol. 1, No. 1, Article . Publication date: February 2024.

14 David C. Y. Chu et al.

We return to the running example to see how CDs and FDs can be combined to enable coordination-

free partitioning where co-hashing forbade it. Listing 2 cannot be partitioned with co-hashing

because toStorage does not share keys with hashset in Line 3. No distribution policy can satisfy

the co-hashing constraint if there exists two relations in the same rule that do not share keys.

However, we know that the hash is a function of the value; there is an FD hash.1 → hash.2.
Hence partitioning on hash.2 implies partitioning on hash.1. The first attributes of toStorage and
hashset are joined through the attributes of the hash relation in all rules, forming a CD. Let the first

attributes of toStorage and hashset—representing a value and a hash—be 𝑉 and 𝐻 respectively:

a fact 𝑓𝑣 in toStorage can only join with a fact 𝑓ℎ in hashset if hash(𝜋𝑉 (𝑓𝑣)) equals 𝜋𝐻 (𝑓ℎ). This
reasoning can be repeatedly applied to partition all relations by the attributes corresponding the

repeated variable hashed, as seen in Figure 6.

Precondition: There exists a distribution policy 𝐷 for relations 𝑟 referenced in 𝐶 that partitions

consistently with the CDs of 𝑟 .

Assume we know all CDs 𝑔 over attribute sets 𝐴1, 𝐴2 of relations 𝑟1, 𝑟2. A distribution policy

partitions consistently with CDs if for any pair of facts 𝑓1, 𝑓2 over referenced relations 𝑟1, 𝑟2 in

rule 𝜑 of 𝐶 , if 𝜋𝐴1
(𝑓1) = 𝑔(𝜋𝐴2

(𝑓2)) for each attribute set, then 𝐷 (𝑓1) = 𝐷 (𝑓2).

We describe the mechanism for systematically finding FDs and CDs in Appendix B.2.1.

Rewrite: Identical to Redirection with Partitioning.

4.3 Partial partitioning
It is perhaps surprising, but sometimes additional coordination can actually help distributed proto-

cols (like Paxos) scale.

There exist Dedalus components that cannot be partitioned even with dependency analysis. If the

non-partitionable relations are rarely written to, it may be beneficial to replicate the facts in those

relations across nodes so each node holds a local copy. This can support multiple local reads in

parallel, at the expense of occasional writes that require coordination.

We divide the component 𝐶 into 𝐶1 and 𝐶2, where relations referenced in 𝐶2 can be partitioned

using techniques in prior sections, but relations referenced in 𝐶1 cannot. In order to fully partition

𝐶 , facts in relations referenced in 𝐶1 must be replicated to all nodes and kept consistent so that

each node can perform local processing. To replicate those facts, inputs that modify the replicated

relations are broadcasted to all nodes.

Coordination is required in order to maintain consistency between nodes with replicated facts. Each

node orders replicated inputs by buffering other inputs when replicated facts 𝑓 arrive, only flushing

the buffer after the node is sure that all other nodes have also received 𝑓 . Knowledge of whether a

node has received 𝑓 can be enforced through a distributed commit or consensus mechanism.

Precondition: 𝐶1 is independent of 𝐶2 and both behave like state machines.

We define “state machines” in Appendix A.4 and the rewrites for partial partitioning in Appendix B.3.

5 EVALUATION
We will refer to our approach of manually modifying distributed protocols with the mechanisms

described in this paper as rule-driven rewrites, and the traditional approach of modifying distributed

protocols and proving the correctness of the optimized protocol as ad hoc rewrites.

In this section we address the following questions:

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 15

Base 1 partition 3 partitions 5 partitions

0 50 100 150 200 250
Throughput (thousands of commands per second)

2

4

6

M
ed

ia
n

la
te

nc
y

(m
s)

(a) Voting

0 25 50 75 100 125 150 175
Throughput (thousands of commands per second)

2

4

6

8

M
ed

ia
n

la
te

nc
y

(m
s)

(b) 2PC

0 20 40 60 80 100 120 140 160
Throughput (thousands of commands per second)

2

4

6

M
ed

ia
n

la
te

nc
y

(m
s)

(c) Paxos

Fig. 7. Throughput/latency comparison between distributed protocols before and after rule-driven rewrites.

(1) How can rule-driven rewrites be applied to foundational distributed protocols, and how well do

the optimized protocols scale? (Section 5.2)

(2) Which of the ad hoc rewrites can be reproduced via the application of (one or more) rules, and

which cannot? (Section 5.3)

(3) What is the effect of the individual rule-driven rewrites on throughput? (Section 5.4)

5.1 Experimental setup
All protocols are implemented as Dedalus programs and compiled to Hydroflow [54], a Rust dataflow

runtime for distributed systems. We deploy all protocols on GCP using n2-standard-4 machines

with 4 vCPUs, 16 GB RAM, and 10 Gbps network bandwidth, with one machine per Dedalus node.

We measure throughput/latency over one minute runs, following a 30 second warmup period. Each

client sends 16 byte commands in a closed loop. The ping time between machines is 0.22ms. We

assume the client is outside the scope of our rewrites, and any rewrites that requires modifying the

client cannot be applied.

5.2 Rewrites and scaling
We manually apply rule-driven rewrites to scale three fundamental distributed protocols—voting,

2PC, and Paxos. We will refer to our unoptimized implementations as BaseVoting, Base2PC,

and BasePaxos, and the rewritten implementations as ScalableVoting, Scalable2PC, and

ScalablePaxos. In general, we will prepend the word “Base” to any unoptimized implemen-

tation, “Scalable” to any implementation created by applying rule-driven rewrites, and “ ” to any

implementation in Dedalus. We measure the performance of each configuration with an increasing

set of clients until throughput saturates, averaging across 3 runs, with standard deviations of

throughput measurements shown in shaded regions. Since the minimum configuration of Paxos

(with 𝑓 = 1) requires 3 acceptors, we will also test voting and 2PC with 3 participants.

For decoupled-and-partitioned implementations, we measure scalability by changing the number

of partitions for partitionable components, as seen in Figure 7. Decoupling contributes to the

throughput differences between the unoptimized implementation and the 1-partition configuration.

Partitioning contributes to the differences between the 1, 3, and 5 partition configurations.

These experimental configurations demonstrate the scalability of the rewritten protocols. They do

not represent the most cost-effective configurations, nor the configurations that maximize through-

put. We manually applied rewrites on the critical path, selecting rewrites with low overhead, where

we suspect the protocols may be bottlenecked. Across the protocols we tested, these bottlenecks

often occurred where the protocol (1) broadcasts messages, (2) collects messages, and (3) logs to

disk. These bottlenecks can usually be decoupled from the original node, and because messages are

, Vol. 1, No. 1, Article . Publication date: February 2024.

16 David C. Y. Chu et al.

often independent of one another, the decoupled nodes can then be partitioned such that each node

handles a subset of messages. The process of identifying bottlenecks, applying suitable rewrites,

and finding optimal configurations may eventually be automated.

Voting. Client payloads arrive at the leader, which broadcasts payloads to the participants, collects

votes from the participants, and responds to the client once all participants have voted. Multiple

rounds of voting can occur concurrently. BaseVoting is implemented with 4 machines, 1 leader

and 3 participants, achieving a maximum throughput of 100,000 commands/s, bottlenecking at the

leader.

We created ScalableVoting from BaseVoting through Mutually Independent Decoupling, Func-
tional Decoupling, and Partitioning with Co-hashing. Broadcasters broadcast votes for the leader;
they are decoupled from the leader through functional decoupling. Collectors collect and count

votes for the leader; they are decoupled from the leader through mutually independent decou-

pling. The remaining “leader” component only relays commands to broadcasters. All components

except the leader are partitioned with co-hashing. The leader cannot be partitioned since that

would require modifying the client to know how to reach one of many leader partitions. With 1

leader, 5 broadcasters, 5 partitions for each of the 3 participants, and 5 collectors, the maximum

configuration for ScalableVoting totals 26 machines, achieving a maximum throughput of 250,000

commands/s—a 2× improvement over the baseline.

2PC (with Presumed Abort). The coordinator receives client payloads and broadcasts voteReq to

participants. Participants log and flush to disk, then reply with votes. The coordinator collects votes,
logs and flushes to disk, then broadcasts commit to participants. Participants log and flush to disk,

then reply with acks. The coordinator then logs and replies to the client. Multiple rounds of 2PC can

occur concurrently. Base2PC is implemented with 4 machines, 1 coordinator and 3 participants,

achieving a maximum throughput of 30,000 commands/s, bottlenecking at the coordinator.

We created Scalable2PC from Base2PC similarly through Mutually Independent Decoupling,
Functional Decoupling, and Partitioning with Co-hashing. Vote Requesters are functionally decoupled
from coordinators: they broadcast voteReq to participants. Committers and Enders are decoupled

from coordinators through mutually independent decoupling. Committers collect votes, log and
flush commits, then broadcast commit to participants. Enders collect acks, log, and respond to

the client. The remaining “coordinator” component relays commands to vote requesters. Each

participant is mutually independently decoupled into Voters and Ackers. Participant Voters log,

flush, then send votes; Participant Ackers log, flush, then send acks. All components (except the

coordinator) can be partitioned with co-hashing. With 1 coordinator, 5 vote requesters, 5 ackers

and 5 voters for each of the 3 participant, 5 committers, and 5 enders, the maximum configuration

of Scalable2PC totals 46 machines, achieving a maximum throughput of 160,000 commands/s—a

5× improvement.

Paxos. Paxos solves consensus while tolerating up to 𝑓 failures. Paxos consists of 𝑓 + 1 proposers

and 2𝑓 + 1 acceptors. Each proposer has a unique, dynamic ballot number; the proposer with the

highest ballot number is the leader. The leader receives client payloads, assigns each payload a

sequence number, and broadcasts a p2a message containing the payload, sequence number, and

its ballot to the acceptors. Each acceptor stores the highest ballot it has received and rejects or

accepts payloads into its log based on whether its local ballot is less than or equal to the leader’s.

The acceptor then replies to the leader via a p2b message that includes the acceptor’s highest ballot.

If this ballot is higher than the leader’s ballot, the leader is preempted. Otherwise, the acceptor has

accepted the payload, and when 𝑓 + 1 acceptors accept, the payload is committed. The leader relays

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 17

Fig. 8. The common path taken by CompPaxos and ScalablePaxos, assuming 𝑓 = 1 and any partitionable
component has 2 partitions. The acceptors outlined in red represent possible quorums for leader election.

committed payloads to the replicas, which execute the payload command and notify the clients.

BasePaxos is implemented with 8 machines—2 proposers, 3 acceptors, and 3 replicas (matching

BasePaxos in Section 5.3)—tolerating 𝑓 = 1 failures, achieving a maximum throughput of 50,000

commands/s, bottlenecking at the proposer.

We created ScalablePaxos from BasePaxos through Mutually Independent Decoupling, (Asym-
metric)2 Monotonic Decoupling, Functional Decoupling, Partitioning with Co-hashing, and Partial
Partitioning with Sealing3. P2a proxy leaders are functionally decoupled from proposers and broad-

cast p2amessages. P2b proxy leaders collect p2bmessages and broadcast committed payloads to the

replicas; they are created through asymmetric monotonic decoupling, since the collection of p2b
messages is monotonic but proposers must be notified when the messages contain a higher ballot.

Both can be partitioned on sequence numbers with co-hashing. Acceptors are partially partitioned

with sealing on sequence numbers, replicating the highest ballot across partitions, necessitating

the creation of a coordinator for each acceptor. With 2 proposers, 3 p2a proxy leaders and 3 p2b

proxy leaders for each of the 2 proposers, 1 coordinator and 3 partitions for each of the 3 acceptors,

and 3 replicas, totalling 29 machines, ScalablePaxos achieves a maximum throughput of 150,000

commands/s—a 3× improvement, bottlenecking at the proposer.

Across the protocols, the additional latency overhead from decoupling is negligible.

Together, these experiments demonstrate that rule-driven rewrites can be applied to scale a variety

of distributed protocols, and that performance wins can be found fairly easily via choosing the

rules to apply manually. A natural next step is to develop cost models for our context, and integrate

into a search algorithm in order to create an automatic optimizer for distributed systems. Standard

techniques may be useful here, but we also expect new challenges in modeling dynamic load and

contention. It seems likely that adaptive query optimization and learning could prove relevant here

to enable autoscaling [20, 58].

5.3 Comparison to ad hoc rewrites
Our previous results show apples-to-apples comparisons between naive Dedalus implementations

and Dedalus implementations optimized with rule-driven rewrites. However they do not quantify

the difference between Dedalus implementations optimized with rule-driven rewrites and ad hoc

2
Asymmetric decoupling is defined in Appendix A.5. It applies when we decouple𝐶 into𝐶1 and𝐶2, where𝐶2 is monotonic,

but𝐶2 is independent of𝐶1.

3
Partitioning with sealing is defined in Appendix B.4. It applies when a partitioned component originally sent a batched set

of messages that must be recombined across partitions after partitioning.

, Vol. 1, No. 1, Article . Publication date: February 2024.

18 David C. Y. Chu et al.

Fig. 9. Throughput/latency comparison between rule-driven and ad hoc rewrites of Paxos.

optimized protocols written in a more traditional procedural language. To this effect, we compare

our scalable version of Paxos to Compartmentalized Paxos [63]. We do this for two reasons: (1)

Paxos is notoriously hard to scale manually, and (2) Compartmentalized Paxos is a state-of-the-art

implementation of Paxos based, among other optimizations, on manually applying decoupling and

partitioning.

To best understand the merits of scalability, we choose not to batch client requests, as batching

often obscures the benefits of individual scalability rewrites.

5.3.1 Throughput comparison. Whittaker et al. created Scala implementations of Paxos (BasePaxos)

and Compartmentalized Paxos (CompPaxos). Since our implementations are in Dedalus, we first

compare throughputs of the Paxos implementations between the two languages to establish a

baseline. Following the nomenclature from Section 5.2, implementations in Dedalus are prepended

with , and implementations in Scala by Whittaker et al. are not.

BasePaxos was reported to peak of 25,000 commands/s with 𝑓 = 1 and 3 replicas on AWS in

2021 [63]. As seen Figure 9, we verified this result in GCP using the same code and experimental

setup. Our Dedalus implementation of Paxos— BasePaxos—in contrast, peaks at a higher 50,000

commands/s with the same configuration as BasePaxos. We suspect this performance difference is

due to the underlying implementations of BasePaxos in Scala and BasePaxos in Dedalus, compiled

to Hydroflow atop Rust. Indeed, our deployment of CompPaxos peaked at 130,000 commands/s, and

our reimplementation of Compartmentalized Paxos in Dedalus (CompPaxos) peaked at a higher

160,000 commands/s, a throughput improvement comparable to the 25,000 command throughput

gap between BasePaxos and BasePaxos.

Note that technically, CompPaxos was reported to peak at 150,000 commands/s, not 130,000.

We deployed the Scala code provided by Whittaker et al. with identical hardware, network, and

configuration, but could not replicate their exact result.

We now have enough context to compare the throughput between CompPaxos and ScalablePaxos;

their respective architectures are shown in Figure 8. CompPaxos achieves maximum throughput

with 20 machines: 2 proposers, 10 proxy leaders, 4 acceptors (in a 2 × 2 grid), and 4 replicas. We

compare CompPaxos and ScalablePaxos using the same number of machines, fixing the number

of proposers (for fault tolerance) and replicas (which we do not decouple or partition). Restricted

to 20 machines, ScalablePaxos achieves the maximum throughput with 2 proposers, 2 p2a proxy

leaders, 3 coordinators, 3 acceptors, 6 p2b proxy leaders, and 4 replicas. All components are kept

at minimum configuration—with only 1 partition—except for the p2b proxy leaders, which are

the throughput bottleneck. ScalablePaxos then scales to 130,000 commands/s, a 2.5× throughput

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 19

1.0 1.2 1.4 1.6 1.8 2.0
Scaling Factor

Functional Decoupling
Monotonic Decoupling

Mutually Independent Decoupling

Partitioning With Co-Hashing
Partitioning With Dependencies

Partial Partitioning

Fig. 10. The scalability gains provided by each rewrite, in isolation.

improvement over BasePaxos. Although CompPaxos reports a 6× throughput improvement over

BasePaxos from 25,000 to 150,000 commands/s in Scala, reimplemented in Dedalus, it reports a 3×
throughput improvement between CompPaxos and BasePaxos, similar to the 2.5× throughput

improvement between ScalablePaxos and BasePaxos. Therefore we conclude that the throughput

improvements of rule-driven rewrites and ad hoc rewrites are comparable when applied to Paxos.

We emphasize that our framework cannot realize every ad hoc rewrite in CompPaxos (Figure 8).

We describe the differences between CompPaxos and ScalablePaxos next.

5.3.2 Proxy leaders. Figure 8 shows that CompPaxos has a single component called “proxy leader”

that serves the roles of two components in ScalablePaxos: p2a and p2b proxy leaders. Unlike p2a

and p2b proxy leaders, proxy leaders in CompPaxos can be shared across proposers. Since only 1

proposer will be the leader at any time, CompPaxos ensures that work is evenly distributed across

proxy leaders. Our rewrites focus on scaling out and do not consider sharing physical resources

between logical components. Moreover, there is an additional optimization in the proxy leader

of CompPaxos. CompPaxos avoids relaying p2bs from proxy leaders to proposers by introducing

nack messages from acceptors that are sent instead. This optimization is neither decoupling nor

partitioning and hence is not included in ScalablePaxos.

5.3.3 Acceptors. CompPaxos partitions acceptors without introducing coordination, allowing each

partition to hold an independent ballot. In contrast, ScalablePaxos can only partially partition

acceptors and must introduce coordinators to synchronize ballots between partitions, because our

formalism states that the partitions’ ballots together must correspond to the original acceptor’s

ballot. Crucially, CompPaxos allows the highest ballot held at each partition to diverge while

ScalablePaxos does not, because this divergence can introduce non-linearizable executions that

remain safe for Paxos, but are too specific to generalize. We elaborate more on this execution in

Appendix C.

Despite its additional overhead, ScalablePaxos does not suffer from increased latency because the

overhead is not on the critical path. Assuming a stable leader, p2b proxy leaders do not need to

forward p2bs to proposers, and acceptors do not need to coordinate between partitions.

5.3.4 Additional differences. CompPaxos additionally includes classical Paxos optimizations such

as batching, thriftiness [47], and flexible quorums [36], which are outside the scope of this paper as

they are not instances of decoupling or partitioning. These optimizations, combined with the more

efficient use of proxy leaders, explain the remaining throughput difference between CompPaxos

and ScalablePaxos.

, Vol. 1, No. 1, Article . Publication date: February 2024.

20 David C. Y. Chu et al.

5.4 On the Benefit of Individual Rewrites
In Figure 10, we examine each rewrite’s scaling potential. To create a consistent throughput

bottleneck, we introduce extra computation via multiple AES encryptions. When decoupling, the

programmust always decrypt the message from the client and encrypt its output.When partitioning,

the program must always encrypt its output. When decoupling, we always separate one node

into two. When partitioning, we always create two partitions out of one. Thus maximum scale

factor of each rewrite is 2×. To determine the scaling factors, we increased the number of clients by

increments of two for decoupling and three for partitioning, stopping when we reached saturation

for each protocol.

Briefly, we study each of the individual rewrites using the following artificial protocols:

• Mutually Independent Decoupling: A replicated set where the leader decrypts a client request,

broadcasts payloads to replicas, collects acknowledgements, and replies to the client (encrypting

the response), similar to the voting protocol. We denote this base protocol as R-set. We decouple

the broadcast and collection rules.

• Monotonic Decoupling: An R-set where the leader also keeps track of a ballot that is potentially

updated by each client message. The leader attaches the value of the ballot at the time each

client request is received to the matching response.

• Functional Decoupling: The same R-set protocol, but with zero replicas. The leader attaches the

highest ballot it has seen so far to each response. It still decrypts client requests and encrypts

replies as before.

• Partitioning With Co-Hashing: A R-set.

• PartitioningWith Dependencies: A R-set where each replica records the number of hash collisions,

similar to our running example.

• Partial Partitioning: A R-set where the leader and replicas each track an integer. The leader’s

integer is periodically incremented and sent to the replicas, similar to Paxos. The replicas attach

their latest integers to each response.

The impact on throughput varies between rewrites due to both the overhead introduced and the

underlying protocol. Note that of our 6 experiments, the first two are the only ones that add a

network hop to the critical path of the protocol and rely on pipelined parallelism. The combination

of networking overhead and the potential for imperfect pipelined parallelism likely explain why

they achieve only about 1.7× performance improvement. In contrast, the speedups for mutually

independent decoupling and the different variants of partitioning are closer to the expected 2×.
Nevertheless, each rewrite improves throughput in isolation as shown in Figure 10.

6 RELATEDWORK
Our results build on rich traditions in distributed protocol design and parallel query processing. The

intent of this paper was not to innovate in either of those domains per se, but rather to take parallel

query processing ideas and use them to discover and evaluate rewrites for distributed protocols.

6.1 Manual Protocol Optimizations
There are many clever, manually-optimized variants of distributed protocols that scale by avoiding

coordination, e.g. [3, 12, 23, 39, 49, 63]. These works rely on intricate modifications to underlying

protocols like consensus, with manual (and not infrequently buggy [53]) end-to-end proofs of

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 21

correctness for the optimized protocol. In contrast, this paper introduces a rule-driven approach to

optimization that is correct by construction, with proofs narrowly focused on small rewrites.

We view our work here as orthogonal to most ad hoc optimizations of protocols. Our rewrites are

general and can be applied correctly to results of the ad hoc optimization. In future work it would

be interesting to see when and how the more esoteric protocols cited above might benefit from

further optimization using the techniques in this paper.

Our work was initially inspired by the manually-derived Compartmentalized Paxos [63], from

which we borrowed our focus on decoupling and partitioning. Our work does not achieve all the

optimizations of Compartmentalized Paxos (Section 5.3), but it achieves the most important ones,

and our results are comparable in performance.

There is a long-standing research tradition of identifying commonalities between distributed

protocols that provide the same abstraction [9, 11, 29, 30, 37, 60, 61, 64, 65]. In principle, optimizations

that apply to one protocol can be transferred to another, but this requires careful scrutiny to

determine if the protocols fit within some common framework.We attack this problem by borrowing

from the field of programming languages. The language Dedalus is our “framework”; any distributed

protocol expressed in Dedalus can benefit from our rewrites via a mechanical application of the

rules. Although our general rewrites cannot cover every possible optimization a programmer can

envision, they can be applied effectively.

6.2 ParallelQuery Processing and Dataflow
A key intuition of our work is to rewrite protocols using techniques from distributed (“shared-

nothing”) parallel databases. The core ideas go back to systems like Gamma [22] and GRACE [25]

in the 1980s, for both long-running “data warehouse” queries and transaction processing work-

loads [21]. Our work on partitioning (Section 4) adapts ideas from parallel SQL optimizers, notably

work on auto-partitioning with functional dependencies, e.g. [70]. Traditional SQL research focuses

on a single query at a time. To our knowledge the literature does not include the kind of decoupling

we introduce in Section 3.

Big Data systems (e.g., [19, 38, 68]) extended the parallel query literature by adding coordination

barriers and other mechanisms for mid-job fault tolerance. By contrast, our goal here is on modest

amounts of data with very tight latency constraints. Moreover, fault tolerance is typically implicit

in the protocols we target. As such we look for coordination-freeness wherever we can, and avoid

introducing additional overheads common in Big Data systems.

There is a small body of work on parallel stream query optimization. An annotated bibliography

appears in [34]. Widely-deployed systems like Apache Flink [16] and Spark Streaming [69] offer

minimal insight into query optimization.

Parallel Datalog goes back to the early 1990s (e.g. [26]). A recent survey covers the state of the

art in modern Datalog engines [41], including dedicated parallel Datalog systems and Datalog

implementations over Big Data engines. The partitioning strategies we use in Section 4 are discussed

in the survey; a deeper treatment can be found in the literature cited in Section 4 [8, 27, 28, 55].

6.3 DSLs for Distributed Systems
We chose the Dedalus temporal logic language because it was both amenable to our optimization

goals and we knew we could compile it to high-performance machine code via Hydroflow. Temporal

logics have also been used for verification of protocols—most notably Lamport’s TLA+ language [44],

which has been adopted in applied settings [50]. TLA+ did not suit our needs for a number of reasons.

, Vol. 1, No. 1, Article . Publication date: February 2024.

22 David C. Y. Chu et al.

Most notably, efficient code generation is not a goal of the TLA+ toolchain. Second, an optimizer

needs lightweight checks for properties (FDs, monotonicity) in the inner loop of optimization; TLA+

is ill-suited to that case. Finally, TLA+ was designed as a finite model checker : it provides evidence of
correctness (up to 𝑘 steps of execution) but no proofs. There are efforts to build symbolic checkers

for TLA+ [42], but again these do not seem well-suited to our lightweight setting.

Declarative languages like Dedalus have been used extensively in networking. Loo, et al. surveyed

work as of 2009 including the Datalog variants NDlog and Overlog [45]. As networking DSLs,

these languages take a relaxed “soft state” view of topics like persistence and consistency. Dedalus

and Bloom [6, 18] were developed with the express goal of formally addressing persistence and

consistency in ways that we rely upon here. More recent languages for software-defined networks

(SDNs) include NetKAT [10] and P4 [15], but these focus on centralized SDN controllers, not

distributed systems.

Further afield, DAG-based dataflow programming is explored in parallel computing (e.g., [13, 14]).

While that work is not directly relevant to the transformations we study here, their efforts to

schedule DAGs in parallel environments may inform future work.

7 CONCLUSION
This is the first paper to present general scaling optimizations that can be safely applied to any

distributed protocol, taking inspiration from traditional SQL query optimizers. This opens the door

to the creation of automatic optimizers for distributed protocols.

Ourwork builds on the ideas of Compartmentalized Paxos [63], which “unpacks” atomic components

to increase throughput. In addition to our work on generalizing decoupling and partitioning via

automation, there are additional interesting follow-on questions that we have not addressed here.

The first challenge follows from the separation of an atomic component into multiple smaller

components: when one of the smaller components fails, others may continue responding to client

requests. While this is not a concern for protocols that assume omission failures, additional checks

and/or rewriting may be necessary to extend our work to weaker failure models. The second

challenge is the potential liveness issues introduced by the additional latency from our rewrites and

our assumption of an asynchronous network. Protocols that calibrate timeouts assuming a partially

synchronous network with some maximum message delay may need their timeouts recalibrated.

This can likely be addressed in practice using typical pragmatic calibration techniques.

ACKNOWLEDGEMENTS
This work was supported by gifts from AMD, Anyscale, Google, IBM, Intel, Microsoft, Mohamed

Bin Zayed University of Artificial Intelligence, Samsung SDS, Uber, and VMware.

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley. http://webdam.inr

ia.fr/Alice/pdfs/all.pdf

[2] Ittai Abraham, GuyGueta, DahliaMalkhi, Lorenzo Alvisi, Ramakrishna Kotla, and Jean-PhilippeMartin. 2017. Revisiting

Fast Practical Byzantine Fault Tolerance. CoRR abs/1712.01367 (2017). arXiv:1712.01367 http://arxiv.org/abs/1712.01367

[3] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik Kosar. 2020. WPaxos: Wide Area Network Flexible

Consensus. IEEE Transactions on Parallel and Distributed Systems 31, 1 (2020), 211–223. https://doi.org/10.1109/TPDS.2

019.2929793

[4] Peter Alvaro, Tom J Ameloot, Joseph M Hellerstein, William Marczak, and Jan Van den Bussche. 2011. A declarative

semantics for Dedalus. UC Berkeley EECS Technical Report 120 (2011), 2011.

, Vol. 1, No. 1, Article . Publication date: February 2024.

http://webdam.inria.fr/Alice/pdfs/all.pdf
http://webdam.inria.fr/Alice/pdfs/all.pdf
https://arxiv.org/abs/1712.01367
http://arxiv.org/abs/1712.01367
https://doi.org/10.1109/TPDS.2019.2929793
https://doi.org/10.1109/TPDS.2019.2929793

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 23

[5] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and David Maier. 2017. Blazes: Coordination Analysis and Placement

for Distributed Programs. ACM Trans. Database Syst. 42, 4, Article 23 (Oct. 2017), 31 pages. https://doi.org/10.1145/31

10214

[6] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. 2011. Consistency Analysis in Bloom: a

CALM and Collected Approach. In Fifth Biennial Conference on Innovative Data Systems Research, CIDR 2011, Asilomar,
CA, USA, January 9-12, 2011, Online Proceedings. 249–260. http://cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf

[7] Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David Maier, and Russell Sears. 2011. Dedalus:

Datalog in Time and Space. In Datalog Reloaded, Oege de Moor, Georg Gottlob, Tim Furche, and Andrew Sellers (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 262–281.

[8] Tom J. Ameloot, Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick. 2017. Parallel-Correctness and

Transferability for Conjunctive Queries. Journal of the ACM 64, 5 (Oct. 2017), 1–38. https://doi.org/10.1145/3106412

[9] Mohammad Javad Amiri, ChenyuanWu, Divyakant Agrawal, Amr El Abbadi, Boon Thau Loo, and Mohammad Sadoghi.

2022. The bedrock of bft: A unified platform for bft protocol design and implementation. arXiv preprint arXiv:2205.04534
(2022).

[10] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David

Walker. 2014. NetKAT: Semantic foundations for networks. Acm sigplan notices 49, 1 (2014), 113–126.
[11] Mahesh Balakrishnan, Chen Shen, Ahmed Jafri, Suyog Mapara, David Geraghty, Jason Flinn, Vidhya Venkat, Ivailo

Nedelchev, Santosh Ghosh, Mihir Dharamshi, Jingming Liu, Filip Gruszczynski, Jun Li, Rounak Tibrewal, Ali Zaveri,

Rajeev Nagar, Ahmed Yossef, Francois Richard, and Yee Jiun Song. 2021. Log-Structured Protocols in Delos. In

Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event, Germany) (SOSP ’21).
Association for Computing Machinery, New York, NY, USA, 538–552. https://doi.org/10.1145/3477132.3483544

[12] Christian Berger and Hans P Reiser. 2018. Scaling byzantine consensus: A broad analysis. In Proceedings of the 2nd
workshop on scalable and resilient infrastructures for distributed ledgers. 13–18.

[13] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson, Keith H Randall, and Yuli Zhou.

1995. Cilk: An efficient multithreaded runtime system. ACM SigPlan Notices 30, 8 (1995), 207–216.
[14] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Herault, Pierre Lemarinier, and Jack Dongarra. 2012.

DAGuE: A generic distributed DAG engine for high performance computing. Parallel Comput. 38, 1-2 (2012), 37–51.
[15] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco,

Amin Vahdat, George Varghese, et al. 2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87–95.

[16] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas. 2015. Apache

flink: Stream and batch processing in a single engine. The Bulletin of the Technical Committee on Data Engineering 38, 4

(2015).

[17] Neil Conway, Peter Alvaro, Emily Andrews, and Joseph M Hellerstein. 2014. Edelweiss: Automatic storage reclamation

for distributed programming. Proceedings of the VLDB Endowment 7, 6 (2014), 481–492.
[18] Neil Conway, William R Marczak, Peter Alvaro, Joseph M Hellerstein, and David Maier. 2012. Logic and lattices for

distributed programming. In Proceedings of the Third ACM Symposium on Cloud Computing. 1–14.
[19] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing on Large Clusters. In Proceedings

of the 6th Conference on Symposium on Operating Systems Design I& Implementation - Volume 6 (San Francisco, CA)

(OSDI’04). USENIX Association, USA, 10.

[20] Amol Deshpande, Zachary Ives, Vijayshankar Raman, et al. 2007. Adaptive query processing. Foundations and Trends®
in Databases 1, 1 (2007), 1–140.

[21] David DeWitt and Jim Gray. 1992. Parallel database systems. Commun. ACM 35, 6 (June 1992), 85–98. https:

//doi.org/10.1145/129888.129894

[22] David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L. Heytens, Krishna B. Kumar, and M. Muralikrishna. 1986.

GAMMA - A High Performance Dataflow Database Machine. In VLDB. 228–237.
[23] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo Alvisi, and Robbert Van Renesse. 2020. Scalog: Seamless

Reconfiguration and Total Order in a Scalable Shared Log. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 325–338. https://www.usenix.org/conference/ns

di20/presentation/ding

[24] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the presence of partial synchrony. Journal
of the ACM (JACM) 35, 2 (1988), 288–323.

[25] Shinya Fushimi, Masaru Kitsuregawa, and Hidehiko Tanaka. 1986. An Overview of The System Software of A Parallel

Relational Database Machine GRACE.. In VLDB, Vol. 86. 209–219.
[26] Sumit Ganguly, Avi Silberschatz, and Shalom Tsur. 1990. A framework for the parallel processing of datalog queries.

ACM SIGMOD Record 19, 2 (1990), 143–152.

, Vol. 1, No. 1, Article . Publication date: February 2024.

https://doi.org/10.1145/3110214
https://doi.org/10.1145/3110214
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
https://doi.org/10.1145/3106412
https://doi.org/10.1145/3477132.3483544
https://doi.org/10.1145/129888.129894
https://doi.org/10.1145/129888.129894
https://www.usenix.org/conference/nsdi20/presentation/ding
https://www.usenix.org/conference/nsdi20/presentation/ding

24 David C. Y. Chu et al.

[27] Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick. 2019. Parallel-Correctness and Containment

for Conjunctive Queries with Union and Negation. ACM Transactions on Computational Logic 20, 3 (July 2019), 1–24.

https://doi.org/10.1145/3329120

[28] Gaetano Geck, Frank Neven, and Thomas Schwentick. 2020. Distribution Constraints: The Chase for Distributed Data.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.ICDT.2020.13

[29] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, andMarko Vukolić. 2010. The next 700 BFT protocols. In Proceedings
of the 5th European conference on Computer systems. 363–376.

[30] Suyash Gupta, Mohammad Javad Amiri, and Mohammad Sadoghi. 2023. Chemistry behind Agreement. In Conference
on Innovative Data Systems Research (CIDR).(2023).

[31] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan Parno, Michael L Roberts, Srinath Setty, and

Brian Zill. 2015. IronFleet: proving practical distributed systems correct. In Proceedings of the 25th Symposium on
Operating Systems Principles. 1–17.

[32] Joseph M. Hellerstein and Peter Alvaro. 2020. Keeping CALM: When Distributed Consistency is Easy. Commun. ACM
63, 9 (Aug. 2020), 72–81. https://doi.org/10.1145/3369736

[33] Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems (TOPLAS) 12, 3 (1990), 463–492.

[34] Martin Hirzel, Robert Soulé, Buğra Gedik, and Scott Schneider. 2018. Stream Query Optimization. Springer International
Publishing, 1–9.

[35] Heidi Howard and Ittai Abraham. 2020. Raft does not Guarantee Liveness in the face of Network Faults. https:

//decentralizedthoughts.github.io/2020-12-12-raft-liveness-full-omission/.

[36] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. 2016. Flexible paxos: Quorum intersection revisited. arXiv
preprint arXiv:1608.06696 (2016).

[37] Heidi Howard and Richard Mortier. 2020. Paxos vs Raft. In Proceedings of the 7th Workshop on Principles and Practice of
Consistency for Distributed Data. ACM. https://doi.org/10.1145/3380787.3393681

[38] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007. Dryad: distributed data-parallel

programs from sequential building blocks. In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007. 59–72.

[39] Mohammad M Jalalzai, Costas Busch, and Golden G Richard. 2019. Proteus: A scalable BFT consensus protocol for

blockchains. In 2019 IEEE international conference on Blockchain (Blockchain). IEEE, 308–313.
[40] Bas Ketsman and Christoph Koch. 2020. Datalog with Negation and Monotonicity. In 23rd International Conference

on Database Theory (ICDT 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 155), Carsten Lutz

and Jean Christoph Jung (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 19:1–19:18.

https://doi.org/10.4230/LIPIcs.ICDT.2020.19

[41] Bas Ketsman, Paraschos Koutris, et al. 2022. Modern Datalog Engines. Foundations and Trends® in Databases 12, 1
(2022), 1–68.

[42] Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. 2019. TLA+ model checking made symbolic. Proceedings of the ACM
on Programming Languages 3, OOPSLA (2019), 1–30.

[43] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2 (May 1998), 133–169. https:

//doi.org/10.1145/279227.279229

[44] Leslie Lamport. 2002. Specifying systems: the TLA+ language and tools for hardware and software engineers. (2002).

[45] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E Gay, Joseph M Hellerstein, Petros Maniatis, Raghu

Ramakrishnan, Timothy Roscoe, and Ion Stoica. 2009. Declarative networking. Commun. ACM 52, 11 (2009), 87–95.

[46] C Mohan, Bruce Lindsay, and Ron Obermarck. 1986. Transaction management in the R* distributed database manage-

ment system. ACM Transactions on Database Systems (TODS) 11, 4 (1986), 378–396.
[47] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is more consensus in Egalitarian parliaments.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM. https://doi.org/10.1145/25

17349.2517350

[48] Inderpal Singh Mumick and Oded Shmueli. 1995. How expressive is stratified aggregation? Annals of Mathematics and
Artificial Intelligence 15 (1995), 407–435.

[49] Ray Neiheiser, Miguel Matos, and Luís Rodrigues. 2021. Kauri: Scalable bft consensus with pipelined tree-based

dissemination and aggregation. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles.
35–48.

[50] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon

web services uses formal methods. Commun. ACM 58, 4 (2015), 66–73.

[51] Diego Ongaro. 2014. Consensus : bridging theory and practice. Ph. D. Dissertation. Stanford University.

[52] Kenneth J. Perry and Sam Toueg. 1986. Distributed agreement in the presence of processor and communication faults.

IEEE Transactions on Software Engineering SE-12, 3 (1986), 477–482. https://doi.org/10.1109/TSE.1986.6312888

, Vol. 1, No. 1, Article . Publication date: February 2024.

https://doi.org/10.1145/3329120
https://doi.org/10.4230/LIPICS.ICDT.2020.13
https://doi.org/10.1145/3369736
https://decentralizedthoughts.github.io/2020-12-12-raft-liveness-full-omission/
https://decentralizedthoughts.github.io/2020-12-12-raft-liveness-full-omission/
https://doi.org/10.1145/3380787.3393681
https://doi.org/10.4230/LIPIcs.ICDT.2020.19
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/2517349.2517350
https://doi.org/10.1145/2517349.2517350
https://doi.org/10.1109/TSE.1986.6312888

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 25

[53] George Pirlea. 2023. Errors found in distributed protocols. https://github.com/dranov/protocol-bugs-list.

[54] Mingwei Samuel, Joseph M Hellerstein, and Alvin Cheung. 2021. Hydroflow: A Model and Runtime for Distributed

Systems Programming. (2021).

[55] Bruhathi Sundarmurthy, Paraschos Koutris, and Jeffrey Naughton. 2021. Locality-Aware Distribution Schemes. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.ICDT.2021.22

[56] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yunhao Zhang, Lorenzo Alvisi, and Natacha Crooks. 2021. Basil. In

Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles CD-ROM. ACM. https://doi.org/10.1

145/3477132.3483552

[57] Pierre Sutra. 2020. On the correctness of Egalitarian Paxos. Inform. Process. Lett. 156 (2020), 105901. https://doi.org/10

.1016/j.ipl.2019.105901

[58] Immanuel Trummer, Samuel Moseley, Deepak Maram, Saehan Jo, and Joseph Antonakakis. 2018. Skinnerdb: regret-

bounded query evaluation via reinforcement learning. Proceedings of the VLDB Endowment 11, 12 (2018), 2074–2077.
[59] Robbert Van Renesse and Deniz Altinbuken. 2015. Paxos Made Moderately Complex. ACM Comput. Surv. 47, 3, Article

42 (Feb. 2015), 36 pages. https://doi.org/10.1145/2673577

[60] Robbert van Renesse, Nicolas Schiper, and Fred B. Schneider. 2015. Vive La Différence: Paxos vs. Viewstamped

Replication vs. Zab. IEEE Transactions on Dependable and Secure Computing 12, 4 (July 2015), 472–484. https:

//doi.org/10.1109/tdsc.2014.2355848

[61] Zhaoguo Wang, Changgeng Zhao, Shuai Mu, Haibo Chen, and Jinyang Li. 2019. On the Parallels between Paxos and

Raft, and how to Port Optimizations. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing.
ACM. https://doi.org/10.1145/3293611.3331595

[62] Michael Whittaker. 2020. mwhittaker/craq_bug. https://github.com/mwhittaker/craq_bug.

[63] Michael Whittaker, Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, Neil Giridharan, Joseph M. Hellerstein,

Heidi Howard, Ion Stoica, and Adriana Szekeres. 2021. Scaling Replicated State Machines with Compartmentalization.

Proc. VLDB Endow. 14, 11 (July 2021), 2203–2215. https://doi.org/10.14778/3476249.3476273

[64] Michael Whittaker, Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, Neil Giridharan, Joseph M. Hellerstein,

Heidi Howard, Ion Stoica, and Adriana Szekeres. 2021. Scaling Replicated State Machines with Compartmentalization

[Technical Report]. arXiv:2012.15762 [cs.DC]

[65] Michael Whittaker, Neil Giridharan, Adriana Szekeres, Joseph Hellerstein, and Ion Stoica. 2021. SoK: A Generalized

Multi-Leader State Machine Replication Tutorial. Journal of Systems Research 1, 1 (2021).

[66] James R Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D Ernst, and Thomas Anderson.

2015. Verdi: a framework for implementing and formally verifying distributed systems. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 357–368.

[67] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan. 2021. DistAI: Data-Driven Automated

Invariant Learning for Distributed Protocols.. In OSDI. 405–421.
[68] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster Computing

with Working Sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10). USENIX Association,

Boston, MA. https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets

[69] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica. 2013. Discretized streams:

Fault-tolerant streaming computation at scale. In Proceedings of the twenty-fourth ACM symposium on operating systems
principles. 423–438.

[70] Jingren Zhou, Per-Ake Larson, and Ronnie Chaiken. 2010. Incorporating partitioning and parallel plans into the SCOPE

optimizer. In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010). IEEE, 1060–1071.

A DECOUPLING
We will require the following terms in addition to the terms introduced in Section 2.

An instance 𝐼 over program 𝑃 is a set of facts for relations in 𝑃 . An immediate consequence
operator evaluates rules to produce new facts from known facts. 𝑇𝜑 (𝐼) over instance 𝐼 and rule 𝜑 is

a set of facts 𝑓ℎ :− 𝑓1, . . . , 𝑓𝑛 that is an instantiation of 𝜑 , where each 𝑓𝑖 is in 𝐼 . For the remainder

of this paper, when we refer to instance, we mean an instance created by evaluating a sequence

of immediate consequences over some set of EDB and input facts. An instance is the state of the

Dedalus program as a result of repeated rule evaluation.

A relation 𝑟 ′ is in the proof tree of 𝑟 if there exists facts 𝑓 ′ ∈ 𝑟 ′ and 𝑓 ∈ 𝑟 such that 𝑓 ′ is in the

proof tree of 𝑓 .

, Vol. 1, No. 1, Article . Publication date: February 2024.

https://github.com/dranov/protocol-bugs-list
https://doi.org/10.4230/LIPICS.ICDT.2021.22
https://doi.org/10.1145/3477132.3483552
https://doi.org/10.1145/3477132.3483552
https://doi.org/10.1016/j.ipl.2019.105901
https://doi.org/10.1016/j.ipl.2019.105901
https://doi.org/10.1145/2673577
https://doi.org/10.1109/tdsc.2014.2355848
https://doi.org/10.1109/tdsc.2014.2355848
https://doi.org/10.1145/3293611.3331595
https://github.com/mwhittaker/craq_bug
https://doi.org/10.14778/3476249.3476273
https://arxiv.org/abs/2012.15762
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets

26 David C. Y. Chu et al.

We assume that there is no entanglement [7]; for any fact, values representing location and time only

appear in the location and time attributes respectively. This allows us to modify the location and

times of facts without worrying about changing the values in other attributes. Our transformations

may introduce entanglement when necessary.

A.1 Mutually independent decoupling
A.1.1 Proof. Let 𝐼 be an instance over 𝐶 and 𝐼 ′ be an instance over 𝐶1 and 𝐶2.

We will demonstrate that for each 𝐼 ′, there exists an 𝐼 such that (1) for relations 𝑟 referenced in

𝐶1 and output relations of 𝐶1 and 𝐶2, 𝐼 contains fact 𝑓 in 𝑟 if and only if 𝐼 ′ contains 𝑓 , and (2) for

relations 𝑟 referenced in 𝐶2, 𝐼 contains 𝑓 in 𝑟 if and only if 𝐼 ′ contains 𝑓 ′, where 𝑓 and 𝑓 ′ share the
same values except 𝜋𝐿 (𝑓 ′) = addr2 and 𝜋𝐿 (𝑓 ′) = addr. By showing that 𝐼 ′ implies the existence of 𝐼

with the same input and output facts, each history 𝐻 ′
constructed from 𝐼 ′ must then be equivalent

to some history 𝐻 constructed by 𝐼 , completing our proof.

We prove by induction; we assume that our proof is correct for any instance 𝐼 ′ constructed through𝑛
immediate consequences, and show that it holds for𝑛+1. The base case of 0 immediate consequences

is trivial; 𝐼 and 𝐼 ′ start with the same set of EDB facts.

Let 𝑇𝜑 (𝐼 ′) be the 𝑛 + 1-th immediate consequence over 𝐼 ′.

Consider 𝜑 where 𝜑 is a rule of 𝐶1. Relations 𝑟 in 𝑏𝑜𝑑𝑦 (𝜑) are by definition referenced in 𝐶1, so by

the induction hypothesis, the same facts exist in 𝑟 for both 𝐼 and 𝐼 ′. Therefore the same immediate

consequence is possible over both 𝐼 and 𝐼 ′, producing the same fact at the head of 𝜑 , proving the

inductive case.

Now consider 𝜑 where 𝜑 is a rule of 𝐶2. For each 𝑟 in the body of 𝜑 , 𝐼 and 𝐼 ′ share the same facts

except those facts 𝑓 in 𝐼 have 𝜋𝐿 (𝑓) = addr and 𝑓 ′ in 𝐼 ′ have 𝜋𝐿 (𝑓 ′) = addr2. The same immediate

consequence is possible in both 𝐼 and 𝐼 ′ differing only in the location of facts, assuming the location

attribute is only used for joins (as enforced by Dedalus). If 𝜑 is synchronous, then the fact at the

head of 𝜑 retains its location value in both 𝐼 and 𝐼 ′, proving the inductive case. If 𝜑 is asynchronous,

then the head of 𝜑 must be an output relation with the same location value in both 𝐼 and 𝐼 ′.

Relations 𝑟 with facts generated in𝐶1 and used in𝐶2 must be forwarded from addr to addr2 through
an asynchronous message channel. In Dedalus, this can be achieved by modifying synchronous

rules into asynchronous rules, turning 𝑟 into an output relation of 𝐶1 and an input relation of 𝐶2.

A.2 Monotonic decoupling
A.2.1 Checks for monotonicity. The strictest check for monotonicity requires that (1) all input

relations of 𝐶 are persisted, and that (2) no rules of 𝐶 contain aggregation or negation constructs.

Fundamentally, these preconditions imply that the existence of any fact 𝑓 guarantees the fact 𝑓 ′

will exist at 𝜋𝑇 (𝑓 ′) = 𝜋𝑇 (𝑓) + 1 and 𝑓 ′ otherwise equals 𝑓 . If all facts 𝑓 over a relation 𝑟 has this

property, then we say 𝑟 is logically persisted. Any persisted relation (with a persistence rule)

must be logically persisted, but a logically persisted relation is not necessarily persisted. We relax

the preconditions for logical persistence below.

A relation 𝑟 is logically persisted if all the relations 𝑟 is dependent on are logically persisted. Consider

the proof tree of any fact 𝑓 in 𝑟 , and all children facts 𝑓𝑐 in 𝑟𝑐 . If all 𝑟𝑐 are logically persisted, then 𝑓 ′𝑐
must exist where 𝜋𝑇 (𝑓 ′𝑐) = 𝜋𝑇 (𝑓𝑐) +1 and 𝑓 ′𝑐 otherwise equals 𝑓𝑐 . Since the rules of𝐶 are monotonic

(no aggregation or negation), then those facts alone are enough to guarantee the existence of 𝑓 ′

where 𝜋𝑇 (𝑓 ′) = 𝜋𝑇 (𝑓) + 1 and 𝑓 ′ otherwise equals 𝑓 . Therefore 𝑟 must be logically persisted.

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 27

Threshold operations over monotone lattices are also monotonic [18], despite involving aggrega-

tions.

To constrain the memory footprint of monotonic components over time, we allow facts to be garbage

collected from persisted relations through user annotations. For example, in Paxos, whether a

quorum is reached is a monotonic condition. Once a quorum is reached for a particular sequence

number in Paxos, the committed value cannot change, so the votes for that quorum can be safely

forgotten (no longer persisted). To allow monotonic components to forget values, we allow the

user to annotate persistence rules with garbage collecting conditions.

A.2.2 Mechanism. Monotonic decoupling employs both the Redirection rewrite (Section 3.1) and

the Decoupling rewrite (Appendix A.3.1) in addition to the following rewrite to persist inputs to𝐶2:

Monotonic Rewrite: For all input relations 𝑟 ′ of 𝐶2:

• Create a relation 𝑟 ′′ with all the attributes of 𝑟 ′ and replace all references of 𝑟 ′ in 𝐶2 with 𝑟
′′
.

• Add the alias and persistence rules to 𝐶2:

r''(...,l,t) :− r'(...,l,t)
r''(...,l,t') :− r''(...,l,t), t'=t+1

A.2.3 Proof. The proof is similar to that of Appendix A.3.2 for 𝜑 where 𝜑 is a rule of 𝐶1. We defer

to the CALM Theorem [32] for 𝜑 where 𝜑 is a rule of 𝐶2.

A.3 Functional decoupling
A.3.1 Mechanism. Functional decoupling employs the Redirection rewrite (Section 3.1) to route

data from outside 𝐶′
to 𝐶2. Routing data from 𝐶1 to 𝐶2 requires the explicit introduction of asyn-

chrony below.

Rewrite: Decoupling. Given a rule 𝜑 in 𝐶1 with a head relation 𝑟 referenced in 𝐶2:

• Create a relation 𝑟 ′ with all the attributes of 𝑟 , and replace all references of 𝑟 in 𝐶2 with 𝑟
′
.

• Add the forwarding rule to 𝐶1:

r'(...,l',t') :− r(...,l,t), forward(v,l'), delay((...,l,t,l'),t')

A.3.2 Proof. Formally, we will demonstrate that for each instance 𝐼 ′ over 𝐶1 and 𝐶2, there exists

an instance 𝐼 over 𝐶 such that (1) for relations 𝑟 referenced in 𝐶1 and output relations of 𝐶1 and 𝐶2

(excluding input relations of 𝐶2), 𝐼 contains fact 𝑓 in 𝑟 if and only if 𝐼 ′ contains 𝑓 , (2) for relations 𝑟
referenced in 𝐶2, 𝐼 contains fact 𝑓 in 𝑟 if and only if 𝐼 ′ contains 𝑓 ′, where 𝑓 and 𝑓 ′ share the same

values except 𝜋𝐿 (𝑓) = addr while 𝜋𝐿 (𝑓 ′) = addr2, and 𝜋𝑇 (𝑓) ≤ 𝜋𝑇 (𝑓 ′).

We again prove by induction, assuming the proof is correct for 𝐼 ′ through𝑛 immediate consequences,

and show that it holds for 𝑛 + 1. The base case is trivial.

Let 𝑇𝜑 (𝐼 ′) be the 𝑛 + 1-th immediate consequence over 𝐼 ′.

Consider 𝜑 ′
where 𝜑 ′

is a rule of 𝐶1. If 𝜑
′
is unchanged from 𝜑 in 𝐶 , then the inductive hypothesis

implies the same facts in both 𝐼 and 𝐼 ′ in all relations in the body of 𝜑 ′
, so 𝑇𝜑 (𝐼 ′) implies 𝑇𝜑 (𝐼).

If 𝜑 ′
is is a newly asynchronous rule, then let 𝑟 be the head of 𝜑 ′

and 𝑓 ′ be the fact of 𝑟 in 𝑇𝜑 ′ (𝐼 ′).
Let 𝜑 be the original, synchronous rule. 𝑟 must be an input relation of 𝐶2, so we must show that

𝑓 ′ is at the head of 𝑇𝜑 ′ (𝐼 ′) if and only if 𝑓 is at the head of 𝑇𝜑 (𝐼), where 𝜋𝐿 (𝑓) = addr, 𝜋𝐿 (𝑓 ′) =
addr2, and 𝜋𝑇 (𝑓 ′) > 𝜋𝑇 (𝑓). Let 𝑡 be the time and 𝑙 be the location of all body facts in 𝑇𝜑 ′ (𝐼 ′). We

, Vol. 1, No. 1, Article . Publication date: February 2024.

28 David C. Y. Chu et al.

know 𝑡 and 𝑙 are also the time and location of all body facts in 𝑇𝜑 (𝐼) by the inductive hypothesis.

𝜑 ′
differs from 𝜑 with the two additional relations forward and delay added to the body. forward

assigns 𝑓 ′ the location addr2, while delay sets the time of 𝑓 ′ to some non-deterministic value

greater than 𝑡 . Since the original rule 𝜑 was synchronous, 𝑓 shares the same location addr as all
other facts in 𝑇𝜑 (𝐼), and either time 𝑡 (if 𝜑 is deductive) or 𝑡 + 1 (if 𝜑 is inductive). This proves the

inductive hypothesis: 𝑓 and 𝑓 ′ share the same values except 𝜋𝐿 (𝑓) = addr while 𝜋𝐿 (𝑓 ′) = addr2,
and 𝜋𝑇 (𝑓) ≤ 𝜋𝑇 (𝑓 ′).

Now consider 𝜑 ′
where 𝜑 ′

is a rule of𝐶2. 𝜑
′
in𝐶2 is unchanged from 𝜑 in𝐶 . Since we assumed that

𝐶2 is functional, 𝜑
′
contains at most one IDB relation in its body. If there are only EDB relations in

its body, then the facts in those EDBs are the same in both 𝐼 ′ and 𝐼 , completing the proof. If there

is one IDB relation 𝑟𝑏 in its body, then by the induction hypothesis, the fact 𝑓 ′
𝑏
of 𝑟𝑏 in 𝐼 ′ implies

fact 𝑓𝑏 in 𝐼 , where 𝜋𝐿 (𝑓𝑏) = addr and 𝜋𝐿 (𝑓 ′𝑏) = addr2, 𝜋𝑇 (𝑓𝑏) < 𝜋𝑇 (𝑓 ′𝑏), and 𝑓 ′
𝑏
otherwise equals

𝑓𝑏 . All remaining relations in the body of 𝜑 must be EDBs with the same facts across all locations

and times. Therefore, any immediate consequence 𝑇𝜑 ′ (𝐼 ′) with 𝑓 ′
𝑏
in its body and 𝑓 ′ in its head

implies 𝑇𝜑 (𝐼) with 𝑓𝑏 in its body and 𝑓 in its head. If 𝜑 is synchronous, then 𝑓 ′ and 𝑓 ′
𝑏
share the

same location and time, 𝑓 and 𝑓𝑏 share the same location and time, and 𝑓 ′ and 𝑓 are otherwise

equal, completing the proof.

If 𝜑 is asynchronous, then 𝑓 ′ and 𝑓 are output facts. Then 𝑓 ′ and 𝑓 share the same location (the

destination), whereas for time, the facts only need to satisfy the inequalities 𝜋𝑇 (𝑓 ′) > 𝜋𝑇 (𝑓 ′𝑏) and
𝜋𝑇 (𝑓) > 𝜋𝑇 (𝑓𝑏). In other words, the range of possible values for 𝜋𝑇 (𝑓 ′) is (𝜋𝑇 (𝑓 ′𝑏),∞) and the

range of possible values for 𝜋𝑇 (𝑓) is (𝜋𝑇 (𝑓𝑏),∞). Since 𝜋𝑇 (𝑓 ′𝑏) > 𝜋𝑇 (𝑓𝑏), the range (𝜋𝑇 (𝑓 ′𝑏),∞)
must be a sub-range of (𝜋𝑇 (𝑓𝑏),∞). Therefore, given 𝑓 ′ in𝑇𝜑 ′ (𝐼 ′), an immediate consequence𝑇𝜑 (𝐼)
with 𝑓 is always possible where 𝜋𝑇 (𝑓) = 𝜋𝑇 (𝑓 ′) and 𝑓 = 𝑓 ′, completing the proof.

A.4 State machine decoupling
Although this decoupling technique has since been cut from the paper, we still include it since its

preconditions and proofs are referenced in Appendix B.3.

In a state machine component, any pair of facts that are combined (say via join or aggregation) at

time 𝑡 must be the result of inputs at time 𝑡 and the order of inputs prior, but the exact value of 𝑡 is

irrelevant. In these cases, we want to guarantee that (a) facts that co-occur at time 𝑡 in 𝐶 will also

be processed together at some time 𝑡 ′ in 𝐶2, and (b) the inputs of 𝐶 prior to 𝑡 match the inputs of

𝐶2 prior to 𝑡
′
. To meet this guarantee, we collect facts from 𝐶1 to 𝐶2 into sequenced batches.

Precondition: 𝐶1 is independent of 𝐶2, and 𝐶2 behaves like a state machine.

Before we formalize what it means to behave like a state machine, a couple of definitions are

helpful.

Definition A.1 (Existence dependency). Relation 𝑟 has an existence dependency on input relations

𝑟𝑖𝑛 if 𝑟 is empty whenever there is no input; that is, 𝑟 = ∅ in any timestep when

∧
𝑟𝑖 ∈𝑟𝑖𝑛 𝑟𝑖 = ∅.

Definition A.2 (No-change dependency). Relation 𝑟 has a no-change dependency on input relations

𝑟𝑖𝑛 if 𝑟 ’s contents remain unchanged in a timestepwhen the inputs are empty. That is, if

∧
𝑟𝑖 ∈𝑟𝑖𝑛 𝑟𝑖 = ∅

at timestep 𝑡 , then 𝑟 contains exactly the same facts at timestep 𝑡 as it did in timestep 𝑡 − 1.

Formally, 𝐶2 is a state machine if (a) all referenced relations have either existence or no-change

dependencies on the inputs, and (b) outputs of 𝐶2 have existence dependencies on the inputs.

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 29

Condition (a) ensures that the component is insensitive to the passing of time(steps), and (b)

ensures that the passing of time(steps) does not affect output content.

A.4.1 Checks for state machine behavior. We provide conservative tests on relations to identify

existence and no-change dependencies. A relation 𝑟 has an existence dependency on input relations

𝑟𝑖𝑛 if for all rules 𝜑 in the proof tree of 𝑟 , (1) 𝜑 does not contain t'=t+1, and (2) the body of 𝜑

contains at least one non-negated relation 𝑟 ′ where either 𝑟 ′ is an input or 𝑟 ′ also has an existence

dependency on 𝑟𝑖𝑛 .

A relation 𝑟 has a no-change dependency on input relations 𝑟𝑖𝑛 if:

(1) Explicit persist. If there is an inductive rule 𝜑 with 𝑟 = ℎ𝑒𝑎𝑑 (𝜑), 𝜑 must be the persistence

rule. Then 𝑟 is persisted.

(2) Implicit persist. If is no such inductive rule, then for all (non-inductive) rules 𝜑 where 𝑟 =

ℎ𝑒𝑎𝑑 (𝜑), the body of𝜑 contains only EDBs and relations 𝑟 ′ where 𝑟 ′ has a no-change dependency
on 𝑟𝑖𝑛 .

(3) Change only on inputs. If there is such an inductive rule, then we also allow rules 𝜑 where

𝑟 = ℎ𝑒𝑎𝑑 (𝜑) to contain at least one non-negated relation 𝑟 ′ in the body, where either 𝑟 ′ ∈ 𝑟𝑖𝑛 or

𝑟 ′ has an existence dependency on 𝑟𝑖𝑛 .

A.4.2 Mechanism. To guarantee coexistence of facts, rewrites for state machine decoupling must

preserve the order and batching of inputs. Similar to the rewrites above, we create new relations

and asynchronous forwarding rules for relations in 𝐶1 referenced in 𝐶2. To preserve ordering and

batching of inputs, we create additional rules in𝐶1 to track the number of previous batches and the

current batch size (the number of output facts to 𝐶2). Then 𝐶2 ensures that all previous batches

have been processed and the current batch has arrived before processing any input fact in the

current batch.

Unlike any decoupling techniques described so far, we cannot reroute rules from other components

𝐶′
to 𝐶2; those input facts must be batched and ordered by 𝐶1. Intuitively, if all inputs are routed

through𝐶1, then the batching and ordering on𝐶1 is a feasible batching and ordering on𝐶 .𝐶2 must

then process its inputs with the same batching and ordering to guarantee correctness. Were facts 𝑓

to arrive at 𝐶2 without batching or ordering information from 𝐶1, then 𝑓 may happen-after some

input 𝑓 ′ in 𝐶1 but be processed before 𝑓 ′ is processed at 𝐶2, violating causality.

Our rewrites append a new attribute 𝑇1 to relations forwarded to 𝐶2 from 𝐶1. This attribute

represents the time on 𝐶1 when each input fact existed, allowing 𝐶2 to process facts in the same

order and batches as 𝐶1 even with non-deterministic message delay.

Rewrite: Batching.Given a rule𝜑 in either𝐶1 or another component𝐶′
whose head 𝑟 is referenced

in 𝐶2, we add the following rules to 𝐶1:

1 # Create a relation 𝑟 ′ with all the attributes of 𝑟, with an additional attribute
𝑇1, and forward to 𝐶2.

2 r'(...,t,l',t') :− r(...,l,t), forward(l,l'), delay((...,l,t,l'),t')
3 # Count the number of facts of 𝑟 for any time. Assumes that count evaluates to 0

if 𝑟 is empty.
4 rCount(count<...>,l,t) :− r(...,l,t)
5 # Sum the size of the batch across relations 𝑟𝑖.
6 batchSize(n,l,t) :− r1Count(n1,l,t), r2Count(n2,l,t), ..., n=n1+n2+...
7 # Record whenever the batch size is non−zero.
8 batchTimes(t,l,t') :− batchSize(n,l,t), n!=0, t'=t+1

, Vol. 1, No. 1, Article . Publication date: February 2024.

30 David C. Y. Chu et al.

9 batchTimes(t,l,t') :− !batchSize(n,l,t), batchTimes(t,l,t), t'=t+1
10 # Send the batch size and times to 𝐶2.
11 inputs(n,t,prevT,l',t') :− batchTimes(prevT,l,t), batchSize(n,l,t), n!=0,

forward(l,l'), delay((n,t,prevT,l,l'),t')
12 inputs(n,t,0,l',t') :− !batchTimes(prevT,l,t), batchSize(n,l,t), n!=0,

forward(l,l'), delay((n,t,prevT,l,l'),t')

On 𝐶2, we modify all references of input relations 𝑟 to rSealed and add the following rules:

1 r''(...,t1,l,t') :− r'(...,t1,l,t)
2 # Count the number of facts of 𝑟 for batch 𝑡1.
3 r''(...,t1,l,t') :− r''(...,t1,l,t), t'=t+1
4 rCount(count<...>,t1,l,t) :− r''(...,t1,l,t)
5 # Count the number of facts across 𝑟𝑖 for batch 𝑡1.
6 recvSize(n,t1,l,t) :− r1Count(n1,t1,l,t), r2Count(n2,t1,l,t), ..., n=n1+n2+...
7 # Check if this batch has been received and the previous batch has been

processed.
8 inputs(n,t1,prevT,l,t') :− inputs(n,t1,prevT,l,t), t'=t+1
9 canSeal(t1,l,t) :− recvSize(n,t1,l,t), inputs(n,t1,prevT,l,t), sealed(prevT,l,t)
10 canSeal(t1,l,t) :− recvSize(n,t1,l,t), inputs(n,t1,0,l,t)
11 # Mark this batch as processed.
12 sealed(t1,l,t') :− canSeal(t1,l,t), t'=t+1
13 sealed(t1,l,t') :− sealed(t1,l,t), t'=t+1
14 # Can process facts at time 𝑡1.
15 rSealed(...,l,t) :− r''(...,t1,l,t), canSeal(t1,l,t)

Note that whenever a time 𝑡1 is sealed on 𝐶2, facts in 𝑟 ′′ and inputs can be garbage collected.

Facts in sealed can be garbage collected if a higher timestamp has been sealed. We omit these

optimizations for simplicity.

A.4.3 Proof. Our proof relies on 𝐶2 processing inputs in the same order and batches as 𝐶1. For

simplicity, we denote 𝐼𝑟,𝑡 as the set of facts 𝑓 in 𝐼 where 𝑓 is a fact of relation 𝑟 in 𝑟 and 𝜋𝑇 (𝑓) = 𝑡 .

Formally, we will prove that for each instance 𝐼 ′ there exists 𝐼 such that (1) for relations 𝑟 referenced

in 𝐶1 and output relations of 𝐶1 and 𝐶2 (excluding input relations of 𝐶2), 𝐼 contains fact 𝑓 in 𝑟 if

and only if 𝐼 ′ contains 𝑓 , and (2) for the set of relations 𝑟 ′ referenced in 𝐶2 (and 𝑟 corresponding to

relations with rSealed replaced with 𝑟), for any time 𝑡 ′ where at least one input relation rSealed
of 𝐶2 is not empty in 𝐼 ′ and contains fact 𝑓 ′𝑖𝑛 , let 𝑡 = 𝜋𝑇1 (𝑓 ′𝑖𝑛). We must have 𝐼 ′

𝑟 ′,𝑡 ′
= 𝐼𝑟,𝑡 when facts

in rSealed are mapped to 𝑟 , and location and time are ignored.

For rules 𝜑 ′
of 𝐶1, the inductive proof is identical to previous proofs.

Now consider 𝜑 ′
where 𝜑 ′

is a rule of 𝐶2 and 𝜑 ′
corresponds to 𝜑 in 𝐶 . Let 𝑡 ′ be the time of

immediate consequence𝑇𝜑 ′ (𝐼 ′) such that for all facts 𝑓 ′ of relations 𝑟 in the body of 𝜑 ′
, 𝜋𝑇 (𝑓 ′) = 𝑡 ′.

If all input relations (rSealed, not 𝑟) are empty for 𝑡 ′ in 𝐼 ′, then 𝐼 ′ cannot produce output facts at
𝑡 ′, since output relations must have existence dependencies on the input relations.

If at least one input relation rSealed is not empty for 𝑡 ′ in 𝐼 ′, we must show 𝐼 ′
𝑟 ′,𝑡 ′

= 𝐼𝑟,𝑡 . Let

𝑡 = 𝜋𝑇1 (𝑓 ′𝑖𝑛) for some fact 𝑓 ′𝑖𝑛 in rSealed with 𝜋𝑇 (𝑓 ′𝑖𝑛) = 𝑡 ′. Let 𝑡 ′< be the time of the previous input

on 𝐼 ′; formally, for all input relations rSealed of 𝐶2, there is no 𝑡
′′
where 𝑡 ′< < 𝑡 ′′ < 𝑡 ′ such that

𝐼 ′rSealed,𝑡 ′′ is non-empty. Similar to how we construct 𝑡 from 𝑡 ′, let 𝑡< = 𝜋𝑇1 (𝑓 ′𝑖𝑛) for some fact 𝑓 ′𝑖𝑛
in rSealed with 𝜋𝑇 (𝑓 ′𝑖𝑛) = 𝑡 ′< .

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 31

We first show that 𝑡< is the time of the previous input on 𝐼 ; formally, for input relations rSealed
of 𝐶2, for all corresponding 𝑟 , there is no 𝑡 ′′ where 𝑡< < 𝑡 ′′ < 𝑡 such that 𝐼𝑟,𝑡 ′′ is non-empty.

We prove by contradiction, assuming such 𝑡 ′′ exists. In order for a fact 𝑓 ′𝑖𝑛 in rSealed in 𝐼 ′ to
have 𝜋𝑇 (𝑓 ′𝑖𝑛) = 𝑡 ′, canSeal must contain the fact canSeal(𝑡, addr2, 𝑡 ′), which is only possible if

sealed contains the fact sealed(𝑡 ′′, addr2, 𝑡 ′) and inputs contains the fact inputs(𝑛, 𝑡, 𝑡 ′′, addr2, 𝑡 ′).
sealed(𝑡 ′′, addr2, 𝑡 ′) implies the fact canSeal(𝑡 ′′, addr2, 𝑡 ′<) where 𝑡 ′< = 𝜋𝑇 (𝑓 ′𝑖𝑛). In order for some

fact 𝑓 in 𝑟 to join with canSeal(𝑡 ′′, addr2, 𝑡 ′<) to create 𝑓𝑖𝑛 , we must have 𝜋𝑇1 (𝑓) = 𝑡 ′′ = 𝜋𝑇1 (𝑓𝑖𝑛).
By definition, 𝜋𝑇1 (𝑓𝑖𝑛) = 𝑡 ′< , so 𝑡

′
< = 𝑡 ′′.

Knowing that no inputs facts exist with times between 𝑡< and 𝑡 in 𝐼 and between 𝑡 ′< and 𝑡 ′ in
𝐼 ′, we can use the existence and no-change dependencies of relations 𝑟 in 𝐼 to reason about the

instances 𝐼 ′
𝑟 ′,𝑡 ′

and 𝐼𝑟,𝑡 . By the induction hypothesis, we have 𝐼 ′
𝑟 ′,𝑡 ′<

= 𝐼𝑟,𝑡< . We can now reason

about the instances 𝐼 ′ and 𝐼 at times 𝑡 ′ − 1 and 𝑡 − 1, respectively. For all relations 𝑟 with existence

dependencies on the inputs, 𝐼 ′
𝑟,𝑡 ′−1 and 𝐼𝑟,𝑡−1 must both be empty. For all relations 𝑟 with no-change

dependencies on the inputs, 𝐼 ′
𝑟,𝑡 ′−1 = 𝐼 ′

𝑟,𝑡 ′<
and 𝐼𝑟,𝑡−1 = 𝐼𝑟,𝑡< , so 𝐼

′
𝑟,𝑡 ′−1 = 𝐼𝑟,𝑡−1.

Consider an immediate consequence 𝑇𝜑 ′ (𝐼 ′) with facts 𝑓 ′ in the body of 𝜑 ′
where 𝜋𝑇 (𝑓 ′) = 𝑡 ′. We

find the set of facts in the proof tree of 𝑓 ′ that have no proof tree (because they are inputs or EDBs)

or have parents in the tree with time 𝑡 ′ − 1. Inputs and EDBs are the same between 𝐼 ′ and 𝐼 at time

𝑡 ′ and 𝑡 , due to our sealing mechanism. Since we know 𝐼 ′
𝑟,𝑡 ′−1 = 𝐼𝑟,𝑡−1, any parent fact in the tree

with time 𝑡 ′ − 1 exists in 𝐼 with time 𝑡 − 1 and evaluates to the same fact. Therefore, the same series

of immediate consequences are possible in 𝐼 to produce each fact in 𝐼 ′
𝑟,𝑡 ′−1. Thus 𝐼

′
𝑟 ′,𝑡 ′

= 𝐼𝑟,𝑡 .

If 𝜑 ′
is an asynchronous rule, then the head of 𝜑 ′

is an output relation 𝑟 , and we have to show that

the fact 𝑓 ′ in 𝑟 ′ of immediate consequence 𝑇𝜑 ′ (𝐼 ′) is equivalent to some fact 𝑓 in 𝑟 of immediate

consequence 𝑇𝜑 (𝐼). Output relations must have existence dependencies in 𝐶2 by assumption, so

given 𝑓𝑏 in the body of 𝑇𝜑 ′ (𝐼 ′) with 𝜋𝑇 (𝑓) = 𝑡 ′, the input relations are not empty at 𝑡 ′ in 𝐼 ′, and
𝐼 ′
𝑟 ′,𝑡 ′

= 𝐼𝑟,𝑡 . 𝑓
′
𝑏
of 𝜑 ′

for 𝐼 ′ must correspond to 𝑓𝑏 in the body of 𝜑 for 𝐼 , 𝜋𝐿 (𝑓𝑏) = addr and 𝜋𝑇 (𝑓𝑏) = 𝑡

instead of 𝜋𝐿 (𝑓 ′𝑏) = addr2 and 𝜋𝑇 (𝑓 ′𝑏) = 𝑡 ′. The facts 𝑓 ′ and 𝑓 at the head of 𝜑 ′
and 𝜑 must be the

same as well, non-deterministic with the constraints 𝜋𝑇 (𝑓 ′) > 𝑡 ′ and 𝜋𝑇 (𝑓) > 𝑡 . We know 𝑡 ′ > 𝑡

due to the addition of an asynchronous channel, therefore 𝜋𝑇 (𝑓) = 𝜋𝑇 (𝑓 ′) is always possible, and
𝑓 = 𝑓 ′, completing the proof.

A.5 Asymmetric decoupling
In this section, we consider decoupling where 𝐶1 and 𝐶2 are mutually dependent and where 𝐶2 is

independent of 𝐶1 instead.

If 𝐶1 and 𝐶2 are both monotonic, then they can be decoupled through the Redirection With

Persistence rewrite (Section 3.2), according to the CALM Theorem [32].

Now consider𝐶2 independent of𝐶1, where𝐶2 exhibits useful properties for decoupling. Intuitively,

although 𝐶2 forwards facts to 𝐶1, we can treat the time in which 𝐶1 processes inputs as the “time

of input arrival” while allowing 𝐶2 to process inputs first.

This presents a problem: 𝐶2 might produce outputs “too early”, violating well-formedness. To

preserve well-formedness, we introduce a rewrite to delay output facts 𝑓 ′ derived from input fact

𝑓 of 𝐶2 until 𝐶1 acknowledges it has processed 𝑓 .

Precondition: 𝐶2 is independent of 𝐶1, and 𝐶2 is (1) a state machine and (2) either monotonic or

functional.

, Vol. 1, No. 1, Article . Publication date: February 2024.

32 David C. Y. Chu et al.

A.5.1 Mechanism. To decouple, first apply the Batching rewrite (Appendix A.4.2) for all rules

in 𝐶2 whose head 𝑟 is referenced in 𝐶1, replacing 𝑟 with rSealed. Populate forward with both

forward(addr,addr2) and forward(addr2,addr). Then apply the forwarding rewrite for all rules

in another component 𝐶′
whose head is referenced in 𝐶2. Finally, perform the following rewrite to

delay outputs of 𝐶2:

Rewrite: Batch Acknowledgement. Add the following rules to track which batches 𝐶1 has

processed:

1 # Component 𝐶1.
2 batchACK(t2,l',t') :− canSeal(t2,l,t), forward(l,l'), delay(t,t')
3 # Component 𝐶2.
4 batchACK(t2,l,t') :− batchACK(t2,l,t), t'=t+1

For each rule𝜑 in𝐶2 with output relation out, create the relation outPwith two additional attributes—
𝑇 2 and 𝐿′—representing the derivation time of the fact and the destination, and add the following

rules:

1 # Replace 𝜑 with this rule.
2 outP(t,l',...,l,t) :− ...
3 # Find the batchACK each output must wait on.
4 outBatchTime(max<prevT>,l,t) :− batchTimes(prevT,l,t), outP(t2,l',...,l,t),

prevT <= t2
5 # Outputs derived at time t2 can now send.
6 outCanSend(t2,l,t) :− outBatchTime(t2,l,t), batchACK(t2,l,t)
7 # Buffer outputs until they can send.
8 outP(t2,l',...,l,t') :− outP(t2,l',...,l,t), t'=t+1, !outCanSend(t2,l,t)
9 # Send the outputs.
10 out(...,l',t') :− outP(t2,l',...,l,t), outCanSend(t2,l,t), delay(t,t')

A.5.2 Proof. Since input relations 𝑟 to 𝐶1 are now buffered and replaced with rSealed, the arrival
time of input facts in the transformed component 𝐶 no longer corresponds to the processing time.

This poses a problem for our proof; in the original component 𝐶 , the arrival time of input facts is
the processing time. Note that since messages are sent over an asynchronous network, any entity

that sends and receives messages from 𝐶 can only observe the “send” time 𝑡𝑠 of each input fact 𝑓 ,

where 𝑡𝑠 < 𝜋𝑇 (𝑓). Intuitively, an input fact that is sent at time 𝑡𝑠 and in-network for 𝑡 seconds is

processed identically to a fact sent at time 𝑡𝑠 , in-network for 𝑡 ′ seconds, and buffered for 𝑏 seconds,

so long as 𝑡 ′ + 𝑏 = 𝑡 .

To formalize this intuition, we introduce the observable instance I, which contains a set of

facts representing the send times of input facts and arrival times of output facts. An instance 𝐼 is

observably equivalent to I if for all facts 𝑓 in relation 𝑟 of 𝐼 , (1) if 𝑟 is an input relation, then 𝑓

exists if and only if there exists 𝑓𝑠 in I where 𝑓 equals 𝑓𝑠 except 𝜋𝑇 (𝑓) > 𝜋𝑇 (𝑓𝑠), and (2) if 𝑟 is an

output relation, then there exists 𝑓 in 𝐼 if and only if there exists 𝑓 in I.

The history of an instance 𝐼 is constructed using the wall-clock times of inputs and outputs of its

observably equivalent instance I. Therefore, any instances 𝐼1 and 𝐼2 that are observably equivalent

to the same I share the same histories.

We will prove that for each instance 𝐼 ′ there exists 𝐼 and the observable instance I such that (1) 𝐼

and 𝐼 ′ are both observably equivalent to I, and (2) Each fact 𝑓 of relation 𝑟 referenced by 𝐶1 in 𝐼 ′

exists if and only if 𝑓 exists in 𝐼 .

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 33

We select the time of input facts in 𝐼 such that its inputs are observably equivalent to I. For each
input relation 𝑟 in 𝐶 : (1) If 𝑟 is an input of 𝐶1, each fact 𝑓 of 𝑟 in 𝐼 ′ exists if and only if 𝑓 exists in 𝐼 ,

and (2) If 𝑟 is an input of 𝐶2, given 𝑓 ′ of 𝑟 in 𝐼 ′ with 𝑡 ′ = 𝜋𝑇 (𝑓 ′), let the seal time be 𝑡𝑠 = 𝜋𝑇 2 (𝑓𝑠) in
𝑓𝑠 of canSeal in 𝐼 ′; let 𝑓 equal 𝑓 ′ except 𝜋𝐿 (𝑓) = addr and 𝜋𝑇 (𝑓) = 𝜋𝑇 (𝑓𝑠); 𝑓 ′ exists if and only if 𝑓

exists in 𝐼 , and (3) If no such 𝑓𝑠 exists, then let 𝜋𝑇 (𝑓) = 𝜋𝑇 (𝑓 ′). Note that in case 2, 𝜋𝑇 (𝑓) > 𝜋𝑇 (𝑓 ′)
due to asynchrony from 𝐶2 to 𝐶1. Therefore, input facts 𝑓 in 𝐼 correspond to input facts 𝑓 ′ in 𝐼 ′

where 𝜋𝑇 (𝑓) ≥ 𝜋𝑇 (𝑓 ′), thus the inputs of 𝐼 are observably equivalent to I.

We first prove the claim that 𝐼 ′ and 𝐼 are equivalent for all facts over relations referenced in 𝐶1. We

prove by induction over the immediate consequence of rules 𝜑 whose head 𝑟 is referenced in 𝐶1.

If 𝜑 is an original rule of 𝐶1, then by the inductive hypothesis, the claim is true. If 𝜑 is a rule of

another component 𝐶′
, then the rule is unchanged and the claim is still true.

Now consider 𝜑 ′
where the head of 𝜑 ′

is rSealed corresponding to some 𝑟 after transformation. 𝜑 ′

is a rule we introduced so there is no immediate consequence over it in 𝐼 . Let 𝜑 refer to the rule with

𝑟 at its head instead of rSealed; 𝜑 is a rule of 𝐶2. We can show that the immediate consequence

𝑇𝜑 (𝐼 ′) at time 𝑡 ′ is possible if and only if 𝑇𝜑 (𝐼) at some time 𝑡 > 𝑡 ′ is possible; this is true if for all
relations 𝑟𝑏 ∈ 𝑏𝑜𝑑𝑦 (𝜑), 𝐼 ′

𝑟𝑏 ,𝑡
′ = 𝐼𝑟𝑏 ,𝑡 . Then as long as 𝑡 > 𝑡 ′, the facts of 𝑟 of immediate consequence

𝑇𝜑 (𝐼 ′) can be asynchronously delivered from 𝐶2 to 𝐶1 at some time 𝑡𝑑 , where 𝑡 ≥ 𝑡𝑑 > 𝑡 ′, and
be sealed at time 𝑡 in a an immediate consequence 𝑇𝜑 ′ (𝐼 ′) over 𝜑 ′

, resulting in the same facts in

rSealed in 𝐼 ′ and 𝑟 in 𝐼 .

Since 𝐶2 behaves like a state machine, the facts of 𝑟𝑏 are dependent on the input facts of 𝐶2 and

their ordering. Since 𝐶2 is either functional or monotonic, the facts of 𝑟𝑏 are not dependent on

the ordering of the input facts; this can be proven by treating each 𝑟𝑏 as an output relation, then

reapplying proofs from Appendices A.2.3 and A.3.2. Let 𝑟 be the input relations of𝐶2. We can prove

that facts 𝑓 ′ of 𝑟𝑖𝑛 in 𝐼 ′ exists if and only if 𝑓 of 𝑟𝑖𝑛 in 𝐼 exists, where 𝑓 ′ equals 𝑓 except 𝜋𝐿 (𝑓 ′) =
addr2 while 𝜋𝐿 (𝑓) = addr, and if 𝜋𝑇 (𝑓 ′) = 𝑡 ′ then 𝜋𝑇 (𝑓) = 𝑡 , but if 𝜋𝑇 (𝑓 ′) < 𝑡 ′, then 𝜋𝑇 (𝑓) < 𝑡 . In

other words, 𝐼 and 𝐼 ′ share inputs at 𝑡 ′ and 𝑡 and all previous inputs, but previous inputs may be

out-of-order.

We prove by contradiction. First consider some 𝑓 ′𝑖 of an input relation of𝐶2 in 𝐼
′
where 𝜋𝑇 (𝑓 ′𝑖) = 𝑡 ′,

but there is no 𝑓𝑖 in 𝐼 where 𝜋𝑇 (𝑓𝑖) = 𝑡 . Since 𝑟 an output of𝐶2 and input of𝐶1, it is batched according

to the batching rewrite, and there must be a fact 𝑓𝑐 in canSeal of 𝐼 ′ with 𝜋𝑇 2 (𝑓𝑐) = 𝑡 ′ signalling
when facts in 𝑟 can be processed. By construction of 𝐼 , 𝑓 ′𝑖 exists in 𝐼 ′ if and only if 𝑓𝑖 exists in 𝐼 , a

contradiction. Now consider some 𝑓 ′𝑖 where 𝜋𝑇 (𝑓 ′𝑖) < 𝑡 ′, but there is no 𝑓𝑖 where 𝜋𝑇 (𝑓𝑖) < 𝑡 . Either

there is some 𝑓𝑐 as above, or 𝜋𝑇 (𝑓𝑖) = 𝜋𝑇 (𝑓 ′𝑖) by construction of 𝐼 . Since 𝑡 ′ < 𝑡 , 𝑡 ′ = 𝜋𝑇 (𝑓𝑖) < 𝑡 ,

completing the proof. Therefore, for inputs and outputs of 𝐶1, 𝐼
′
and 𝐼 and observably equivalent

to I.

We now prove that 𝐼 ′ and 𝐼 are observably equivalent to I for inputs and outputs of 𝐶2. By

construction of 𝐼 , the inputs of 𝐼 are observably equivalent to I. Since 𝐶2 is either functional or

monotonic, and𝐶2 is independent of𝐶1, given the same input facts of𝐶2 in 𝐼 ′ and 𝐼 , in any relation

𝑟 referenced in 𝐶2, 𝑓
′
exists in 𝑟 of 𝐼 ′ if and only if 𝑓 exists in 𝐼 , where 𝑓 ′ equals 𝑓 except on time.

Consider output fact 𝑓 ′ derived at time 𝑡 ′ in 𝐼 ′ and 𝑡 in 𝐼 . In 𝐼 ′, 𝑓 ′ is buffered in outP until the latest
input fact of 𝐶2 is acknowledged by 𝐶1. Since we assumed that 𝐶2 is a state machine, all outputs of

𝐶2 must have existence dependencies on its inputs, and the latest input fact 𝑓 ′𝑖 of𝐶2 in 𝐼
′
must have

time 𝑡 ′. There must be a fact 𝑓𝑐 in canSeal of 𝐼 ′ with 𝜋𝑇 2 (𝑓𝑐) = 𝑡 ′. By construction of 𝐼 , 𝑡 = 𝜋𝑇 (𝑓𝑐).
The acknowledgement for 𝑓𝑖 must be sent at 𝑡 in 𝐼 ′ and arrive at some time 𝑡𝑜 > 𝑡 at 𝐶2, when 𝑓 ′

, Vol. 1, No. 1, Article . Publication date: February 2024.

34 David C. Y. Chu et al.

can be sent. Therefore, the range of possible times of 𝑓 is (𝑡,∞) and (𝑡𝑜 ,∞) for 𝑓 ′, where the range
of 𝑓 ′ is a sub-range of 𝑓 , and any immediate consequence of 𝑓 ′ in 𝐼 ′ must be possible in 𝐼 .

B PARTITIONING
B.1 Partitioning by co-hashing
B.1.1 Mechanism. After finding a distribution policy𝐷 that partitions consistently with co-hashing,

the partitioning rewrite routes input facts to nodes addr_i by injecting the distribution policy𝐷 . We

model𝐷 as a relation in Dedalus, such that if𝐷 (𝑓) = addr_i, then we add the tuple D(..., addr_i),
where ... represents the values of 𝑓 , excluding time: We then apply the following rewrite:

Rewrite: Redirection With Partitioning. Given a rule 𝜑 in another component 𝐶′
whose head

relation 𝑟 is referenced in 𝐶:

• Add the body term 𝐷 (. . . , 𝑙 ′) to 𝜑 , where . . . is bound to the variables in the head of the rule.

• Replace the location variable 𝑣 of the head of the rule with 𝑙 ′. Replace 𝑣 with 𝑙 ′ in delay similarly.

Note that this rewrite differs from the Redirection rewrite (Section 3.1) in that the entire fact is

used to determine the new destination, while the Redirection rewrite only considers the original

destination.

B.1.2 Proof. Formally, we will prove that for each instance 𝐼 ′ over the component 𝐶 partitioned

by co-hashing with distribution policy 𝐷 , there exists 𝐼 over the original component𝐶 such that (1)

for output relations 𝑟 , 𝐼 contains fact 𝑓 in 𝑟 if and only if 𝐼 ′ contains 𝑓 , and (2) for input relations 𝑟

or relations referenced in 𝐶 , 𝐼 contains 𝑓 in 𝑟 if and only if 𝐼 ′ contains 𝑓 ′, where 𝑓 and 𝑓 ′ share the
same values except 𝜋𝐿 (𝑓 ′) = 𝐷 (𝑓).

First consider 𝜑 ′
where the head relation 𝑟 of 𝜑 ′

is an input of 𝐶 , and 𝜑 ′
is a rule of some other

component 𝐶′
. Let 𝜑 be the original rule. Facts in the body of 𝜑 and 𝜑 ′

are the same in both 𝐼 ′

and 𝐼 , and the partitioning rewrite only changes the location of 𝑓 ′ in the head of 𝜑 ′
such that

𝜋𝐿 (𝑓) = 𝐷 (𝑓). Thus our claim holds for input relations of 𝐶 .

Now consider 𝜑 in 𝐶 . All relations in the body of 𝜑 are referenced by 𝐶 , by definition.

Consider synchronous or inductive𝜑 , such that the head relation 𝑟 of𝜑 is referenced in𝐶 as well; we

need to prove that fact 𝑓 of 𝑟 in𝑇𝜑 (𝐼) exists if and only if 𝑓 ′ exists in𝑇𝜑 ′ (𝐼 ′), where 𝜋𝐿 (𝑓 ′) = 𝐷 (𝑓 ′).
Assume by induction that this holds for 𝐼 and 𝐼 ′. 𝜑 equals 𝜑 ′

since the rewrite does not alter rules

in 𝐶 . For relation 𝑟ℎ = ℎ𝑒𝑎𝑑 (𝜑) and any 𝑟𝑏 ∈ 𝑏𝑜𝑑𝑦 (𝜑), there must be some attributes 𝐴ℎ, 𝐴𝑏 of

𝑟ℎ, 𝑟𝑏 that share keys; otherwise 𝐷 cannot exist and we do not partition. Let 𝑓𝑏 be the fact of 𝑟𝑏 in

𝑇𝜑 (𝐼), and 𝑓 ′
𝑏
be the corresponding fact in 𝑇𝜑 (𝐼 ′). 𝐷 must partition consistently with co-hashing

on 𝐴ℎ, 𝐴𝑏 , so 𝐷 (𝑓ℎ) = 𝐷 (𝑓𝑏) and 𝐷 (𝑓 ′
ℎ
) = 𝐷 (𝑓 ′

𝑏
). 𝜑 is synchronous or inductive, so we must have

𝜋𝐿 (𝑓 ′ℎ) = 𝜋𝐿 (𝑓 ′𝑏). The inductive hypothesis states that 𝐷 (𝑓 ′
𝑏
) = 𝜋𝐿 (𝑓 ′𝑏). Since 𝐷 (𝑓 ′

ℎ
) = 𝐷 (𝑓 ′

𝑏
) and

𝜋𝐿 (𝑓 ′ℎ) = 𝜋𝐿 (𝑓 ′𝑏), we must have 𝐷 (𝑓 ′
ℎ
) = 𝜋𝐿 (𝑓 ′ℎ). Therefore the induction hypothesis holds for all

instances 𝐼 and 𝐼 ′.

If 𝜑 is asynchronous, relations 𝑟 ∈ 𝑏𝑜𝑑𝑦 (𝜑) must be inputs or referenced relations. By the proofs

above, facts 𝑓1, 𝑓2 of any pair of relations 𝑟1, 𝑟2 ∈ 𝑏𝑜𝑑𝑦 (𝜑) are partitioned consistently with co-

hashing on the attributes that share keys. Therefore 𝐷 (𝑓1) = 𝐷 (𝑓2), implying 𝜋𝐿 (𝑓 ′1) = 𝜋𝐿 (𝑓 ′2)
for the corresponding 𝑓 ′

1
, 𝑓 ′

2
which are otherwise identical to 𝑓1, 𝑓2. Therefore any immediate

consequence over these facts 𝑓1, 𝑓2 of𝑇𝜑 (𝐼) can always correspond to some immediate consequence

𝑇𝜑 (𝐼 ′) over 𝑓 ′1 , 𝑓 ′2 , and vice versa. The location of the head (the output relation) is unmodified,

completing our proof.

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 35

Note that we do not separately prove correctness for aggregation and negation because they are

covered by our proofs according to the definition of “sharing keys” in Section 4.1.

B.2 Partitioning with dependencies
B.2.1 Checks for dependencies. FDs in Dedalus can be created in three ways:

• EDB annotation. For example, hash(M, H) is the EDB relation that simulates the hash function

ℎ𝑎𝑠ℎ(𝑚) = ℎ, so there is an FD 𝑔 : 𝑀 → 𝐻 where 𝑔(𝑚) = ℎ𝑎𝑠ℎ(𝑚).

• Variable sharing. For a relation 𝑟 , if in all rules 𝜑 with 𝑟 as the head, attributes𝐴, 𝐵 of 𝑟 always

share keys, then there is an FD from 𝐴 to 𝐵 and from 𝐵 to 𝐴, where 𝑔(𝑥) = 𝑥 .

• Inheritance. The heads of rules 𝜑 can inherit functional dependencies from a combination of

joined relations in the body of 𝜑 .

In the last case, to determine which dependencies are inherited, we perform the following analysis

for each relation 𝑟 in the head of rule 𝜑 :

• Attribute-variable substitution. Take the set of all FDs of all relations in the body of 𝜑 and

replace each domain/co-domain on attributes with their bound variables in 𝜑 .

• Constant substitution. If an attribute is bound to a constant instead of another variable, plug

the constant into the FDs of that attribute. Now all FDs in 𝜑 should be functions on variables.

• Transitive closure. Construct the transitive closure of all such FDs.

• Variable-attribute substitution. Replace each FD on variables with their bound attributes

from 𝑟 , if possible. The FDs that only contain attributes in 𝑟 are the possible FDs of 𝑟 .

Having described the process of extracting FDs for each relation 𝑟 at the head of each rule 𝜑 , we

must determine which FDs hold across rules. Since the identification of FDs for any relation assumes

that all dependent relations have already been analyzed, and Dedalus allows dependency cycles,

FD analysis must be recursive. We divide the process of identifying FDs for 𝑟 into two steps: union

and intersection. The union step recursively takes the union of generated dependencies in any rule

𝜑 where 𝑟 is the head; the intersection step recursively removes FDs that are not generated in some

rule 𝜑 where 𝑟 is the head.

CDs can be similarly extracted using dependency analysis. In the variable-attribute substitution

step, instead of only retaining FDs where variables in the domain and co-domain can all be replaced
with attributes in 𝑟 , retain FDs where any variable can be replaced with attributes in 𝑟 . These are

the CDs of 𝑟 and the relations 𝑟 joins with in 𝜑 ; they describe how attributes of 𝑟 joins with other

relations in 𝜑 . The CDs that hold across rules can be identified with the intersection step for FDs.

B.2.2 Mechanism. The rewrite mechanics are identical to those in Appendix B.1.1.

B.2.3 Proof. The proofs are similar to those in Appendix B.1.2, assuming a CD 𝑔 exists over

attributes 𝐴, 𝐵 of relations 𝑟1, 𝑟2 only if for any 𝑓1, 𝑓2 of 𝑟1, 𝑟2 in the same proof tree, we must have

𝜋𝐴 (𝑓1) = 𝑔(𝜋𝐵 (𝑓2)).

B.3 Partial partitioning
B.3.1 Mechanism. In order to replicate relations 𝑟 referenced in 𝐶1, we create a new “coordinator”

proxy node at addr', introduce a relation proxy(𝑙, 𝑙 ′), and populate proxywith a tuple (𝑎𝑑𝑑𝑟, 𝑎𝑑𝑑𝑟 ′).

, Vol. 1, No. 1, Article . Publication date: February 2024.

36 David C. Y. Chu et al.

Rewrite: Replication. Given a rule 𝜑 in another component𝐶′
whose head relation 𝑟 is referenced

in 𝐶:

• If 𝑟 is referenced in𝐶1, add the body term proxy(𝑙, 𝑙 ′) to 𝜑 and bind the location attribute of the

head to 𝑙 .

• Otherwise, apply the partitioning rewrite.

We describe the functionality of the proxy node but omit its implementation. The proxy node acts

as the coordinator in 2PC, where the partitioned nodes are the participants. It receives input facts

on behalf of 𝐶1 as described above, assigns each fact a unique, incrementing order, and broadcasts

them to each node through rVoteReq. The nodes freeze and reply through rVote. The proxy waits

to hear from all the nodes, then broadcasts the message through rCommit, which unfreezes the

nodes. We describe how the nodes are modified to freeze, vote, and unfreeze (only after receiving

all previously voted-for values) below:

Add the following rules to 𝐶:

1 processedI(i,l,t') :− processedI(i,l,t), t'=t+1
2 maxProcessedI(max<i>,l,t) :− processedI(i,l,t)
3 maxReceivedI(max<i>,l,t) :− receivedI(i,l,t)
4 unfreeze(l,t) :− maxReceivedI(i,l,t), maxProcessedI(i,l,t), !outstandingVote(l,t)

As we show below, unfreeze(l,t) will be appended to rules so they can only be executed when

all previous replicated inputs have been processed.

For each relation 𝑟 referenced in 𝐶1, replace 𝑟 with rSealed and add the following rules:

1 # Send replicated messages to the proxy for ordering.
2 rVoteReq(...,l,t') :− rVoteReq(...,l,t), t'=t+1
3 rVote(l,...,l',t') :− rVoteReq(...,l,t), proxy(l,l'), delay((...,l,t,l'),t')
4 # The proxy sends rCommit when all partitions have sent rVote.
5 rCommit(i,...,l,t') :− rCommit(i,...,l,t), t'=t+1
6 receivedI(i,l,t) :− rCommit(i,...,l,t)
7 # Messages in rCommit are processed in the proxy−assigned order.
8 rSealed(next,...,l,t) :− maxProcessed(i,l,t), next=i+1, rCommit(next,...,l,t)
9 rSealed(0,...,l,t) :− !maxProcessed(i,l,t), rCommit(0,...,l,t)
10 processedI(i,l,t') :− rSealed(i,...,l,t), t'=t+1
11 outstandingVote(l,t) :− rVoteReq(...,l,t), !rCommit(i,...,l,t)

For each remaining relation 𝑟 in 𝐶 , replace 𝑟 with rSealed, and add the following rules:

1 r(...,l,t') :− r(...,l,t), t'=t+1, !unfreeze(l,t)
2 rSealed(...,l,t) :− r(...,l,t), unfreeze(l,t)

B.3.2 Proof. Before stating our proof goal, we present terms to describe partitioned state. For

simplicity, we denote 𝐼𝑟,𝑝,𝑡 as the set of facts 𝑓 in 𝐼 where 𝑓 is a fact of a relation in 𝑟 , 𝐷 (𝑓) = 𝑝 ,

and 𝜋𝑇 (𝑓) = 𝑡 . A relation 𝑟 is empty at time 𝑡 in instance 𝐼 and node 𝑝 if there is no fact 𝑓 of 𝑟 in 𝐼

where 𝜋𝑇 (𝑓) = 𝑡 and 𝐷 (𝑓) = 𝑝 . The corresponding facts of a replicated fact 𝑓 are all facts 𝑓 ′ where
𝑓 equals 𝑓 ′ except 𝜋𝐿 (𝑓) ≠ 𝜋𝐿 (𝑓 ′).

Since input relations 𝑟 to𝐶1 now arrive at the proxy first before being forwarded to the partitioned

nodes, the arrival time of input facts in the transformed component𝐶 no longer corresponds to the

processing time. This poses a problem for our proof; in the original component𝐶 , the arrival time of

input facts is the processing time. We relax this requirement through the observation that because

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 37

messages are sent over an asynchronous network, any entity that sends and receives messages

from 𝐶 can only observe the “send” time 𝑡𝑠 of each input fact 𝑓 , where 𝑡𝑠 < 𝜋𝑇 (𝑓). Intuitively, an
input fact that is sent at time 𝑡𝑠 and in-network for 𝑡 seconds is processed identically to a fact sent

at time 𝑡𝑠 , in-network for 𝑡 ′ seconds, and buffered for 𝑏 seconds, so long as 𝑡 ′ + 𝑏 = 𝑡 .

We will prove that for each instance 𝐼 ′ over the partially partitioned component 𝐶 , there exists

𝐼 over the original component 𝐶 and the observable instance I such that (1) 𝐼 and 𝐼 ′ are both
observably equivalent to I, and (2) for the set of relations 𝑟 referenced in 𝐶 (and 𝑟 ′ corresponding
to 𝑟 with rSealed replacing 𝑟), for any time 𝑡 ′ and node 𝑝 where at least one input relation rSealed
of 𝐶1 is not empty in 𝐼 ′ and contains fact 𝑓 ′, let 𝑓 be the fact in 𝐼 corresponding to 𝑓 ′ with the

smallest time 𝑡 = 𝜋𝑇 (𝑓), and let 𝑝 = 𝜋𝐿 (𝑓 ′). We must have 𝐼 ′
𝑟 ′,𝑝,𝑡 ′

= 𝐼𝑟,𝑝,𝑡 . In other words, although

each replicated input is delivered at different times at different nodes, the states of each node at

their differing times of delivery correspond to the original state at a single time of input delivery.

(3) Similarly, if at least one input relation rSealed of𝐶2 is not empty, then the same condition holds

with 𝑡 ′ = 𝑡 , 𝑝 = 𝐷 (𝑓 ′).

First, observe that claim 1 holds if (a) each output fact 𝑓 of 𝐶 exists in 𝐼 ′ if and only if 𝑓 is also in 𝐼 ,

and (b) claims 2 and 3 hold. Let I be observably equivalent to 𝐼 ; each input fact 𝑓 of 𝑟 in 𝐼 exists if

and only if there exists 𝑓𝑠 in I where 𝑓 equals 𝑓𝑠 except 𝜋𝑇 (𝑓) > 𝜋𝑇 (𝑓𝑠). By claims 2 and 3, there

must be 𝑓 ′ in 𝐼 ′ where 𝑓 ′ equals 𝑓 except 𝜋𝑇 (𝑓 ′) ≥ 𝜋𝑇 (𝑓) (since 𝜋𝑇 (𝑓) is based on the smallest

𝜋𝑇 (𝑓 ′) across nodes), which implies 𝜋𝑇 (𝑓 ′) > 𝜋𝑇 (𝑓𝑠). If output facts in 𝐼 and 𝐼 ′ are identical, then
𝐼 ′ must also be observably equivalent to I.

Claims 2 and 3 imply that output facts in 𝐼 ′ are also possible in 𝐼 . Output relations in𝐶 are assumed

to have existence dependencies on inputs, so given the inputs 𝑓 ′ and 𝑓 above, if the range of

possible times for any output fact 𝑓 ′𝑜 in 𝐼 ′ is (𝜋𝑇 (𝑓 ′),∞), then the range of possible times for the

same output facts 𝑓𝑜 in 𝐼 must be (𝜋𝑇 (𝑓),∞). Since 𝜋𝑇 (𝑓 ′) ≥ 𝜋𝑇 (𝑓), so the range of possible output
times of 𝑓 ′𝑜 must be a sub-range of 𝑓𝑜 , and any 𝑓 ′𝑜 in 𝐼 ′ is possible in 𝐼 .

Therefore it suffices to prove claims 2 and 3.

We select the time of input facts in 𝐼 such that its inputs are observably equivalent to I. For facts
𝑓 ′ in 𝐼 ′ over relations rSealed in 𝐶: (1) If rSealed is referenced in 𝐶1, let 𝑓

′
𝑎 be the corresponding

fact of 𝑓 ′ in 𝐼 ′ with the smallest time 𝑡 ′ = 𝜋𝑇 (𝑓 ′), and let 𝑓 equal 𝑓 ′𝑎 except 𝜋𝐿 (𝑓) = addr; 𝑓 of

the corresponding 𝑟 exists in 𝐼 if and only if 𝑓 ′ exists in 𝐼 ′. (2) If rSealed is referenced in 𝐶2, let 𝑓

equal 𝑓 ′ except 𝜋𝐿 (𝑓 ′) = addr; 𝑓 of the corresponding 𝑟 exists in 𝐼 if and only if 𝑓 ′ exists in 𝐼 ′. By
the partial partitioning rewrite, each fact in rSealed is derived from a series of facts in r, rVote,
rVoteReq, then rCommit. The fact 𝑓𝑟 in 𝑟 in its proof tree must have an earlier time, which must be

later than the send time of 𝑓𝑟 . Therefore, since the times of input facts 𝑓 in 𝐼 is set to the times of

facts in rSealed, 𝜋𝑇 (𝑓) must be later than the send time of 𝑓 , and the inputs of 𝐼 are observably

equivalent to I.

We now prove claim 2 and 3 by induction on facts with time 𝑡𝑖 in 𝐼 ′.

We show that claim 2 holds for facts with time 𝑡 ′ = 𝑡𝑖 + 1, assuming claims 2 and 3 hold up to 𝑡𝑖 .

We will prove by induction of the inputs in 𝐼 ′ and 𝐼 up to time 𝑡 ′. Let 𝑓 ′ be a fact in input relation

rSealed of 𝐶1 in 𝐼 ′ with 𝑡 ′ = 𝜋𝑇 (𝑓 ′), 𝑝 = 𝜋𝐿 (𝑓 ′), and 𝑓 ′𝑎 be the fact in 𝐼 ′ corresponding to 𝑓 ′ with
the smallest time 𝑡 = 𝜋𝑇 (𝑓 ′𝑎). Let 𝑓 equal 𝑓 ′𝑎 except 𝜋𝐿 (𝑓) = addr. By definition of 𝐼 above, 𝑓 is

an input fact in 𝐼 . By the partial partitioning rewrite, there is no other co-occurring input fact

𝑓 ′′ in 𝐼 ′ with 𝜋𝑇 (𝑓 ′′) = 𝑡 ′, since processedI will not contain the index of rCommit until the next
timestep. Therefore, 𝐼 does not contain any other input fact at 𝑡 . Let 𝑓 ′

1
be the most recent fact in

, Vol. 1, No. 1, Article . Publication date: February 2024.

38 David C. Y. Chu et al.

any input relation 𝑟1 in 𝐼 ′ with 𝑡 ′
1
= 𝜋𝑇 (𝑓 ′1), 𝑡 ′ > 𝑡 ′

1
, and 𝑝 = 𝜋𝐿 (𝑓 ′1), such that there does not exist

𝑓 ′
2
input fact with 𝑡 ′

2
= 𝜋𝑇 (𝑓 ′2) in 𝐼 ′ where 𝑡 ′ > 𝑡 ′

2
> 𝑡 ′

1
. Let 𝑓 ′

1𝑎 correspond to 𝑓 ′
1
with the smallest

time 𝑡1 = 𝜋𝑇 (𝑓 ′1𝑎). Let 𝑓1 equal 𝑓 ′1𝑎 except 𝜋𝐿 (𝑓1) = addr. By definition of 𝐼 above, 𝑓1 is an input fact

in 𝐼 . By the inductive hypothesis, we have 𝐼 ′
𝑟 ′,𝑝,𝑡 ′

1

= 𝐼𝑟,𝑝,𝑡1 .

Since no input facts exist in 𝐼 ′ for node 𝑝 between 𝑡 ′
1
and 𝑡 ′, if we can show that no input facts exist

in 𝐼 for partition 𝑝 between 𝑡1 and 𝑡 , then we can reuse the proof from Appendix A.4.3 combined

with the partitioning proof from Appendix B.1.2 to show that 𝐼 ′
𝑟 ′,𝑝,𝑡 ′

= 𝐼𝑟,𝑝,𝑡 .

Lemma 1 (Order consistency). Given facts 𝑓1, 𝑓2 of an input relation of 𝐶1 in 𝐼 , 𝜋𝑇 (𝑓1) is less
than 𝜋𝑇 (𝑓2) if and only if for each node 𝑝 , for each pair of corresponding facts 𝑓 ′

1
, 𝑓 ′

2
in 𝐼 ′ where

𝜋𝐿 (𝑓 ′1) = 𝜋𝐿 (𝑓 ′2) = 𝑝 , we have 𝜋𝑇 (𝑓 ′1) < 𝜋𝑇 (𝑓 ′2).

Proof. Assume by contradiction that for some node 𝑝 , 𝜋𝑇 (𝑓 ′1) ≥ 𝜋𝑇 (𝑓 ′2). By the partial partitioning
rewrite, we know that 𝜋𝑇 (𝑓 ′1) = 𝜋𝑇 (𝑓 ′2) is impossible for input relations of 𝐶1. Let the order 𝑂 (𝑓 ′)
of a fact 𝑓 ′ in an input relation rSealed of 𝐶1 in 𝐼 ′ be the value of the index attribute of its parent
fact in rCommit. Then 𝜋𝑇 (𝑓 ′1) > 𝜋𝑇 (𝑓 ′2) if and only if 𝑂 (𝑓 ′

1
) > 𝑂 (𝑓 ′

2
), which holds across all nodes

𝑝 by the partial partitioning rewrite. Now let 𝑓 ′
1𝑎 be the corresponding fact of 𝑓1 with the smallest

time in 𝐼 ′, and 𝑓 ′
2𝑏

for 𝑓2. By construction of 𝐼 , 𝜋𝑇 (𝑓 ′1𝑎) = 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓 ′
2𝑏
) = 𝜋𝑇 (𝑓2). Let 𝑓 ′2𝑎 be the

corresponding fact of 𝑓2 where 𝜋𝐿 (𝑓 ′2𝑎) = 𝜋𝐿 (𝑓 ′1𝑎); 𝑓 ′1𝑎 and 𝑓 ′
2𝑎 are the corresponding inputs for 𝑓1

and 𝑓2 on one specific node. Define 𝑓 ′
1𝑏

for 𝑓 ′
2𝑏

similarly. Since ordering is consistent across nodes,

𝑂 (𝑓 ′
1
) > 𝑂 (𝑓 ′

2
) implies 𝑂 (𝑓 ′

1𝑎) > 𝑂 (𝑓 ′
2𝑎), which implies 𝜋𝑇 (𝑓 ′1𝑎) > 𝜋𝑇 (𝑓 ′2𝑎). Since 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2),

we know 𝜋𝑇 (𝑓 ′1𝑎) < 𝜋𝑇 (𝑓 ′
2𝑏
), therefore 𝜋𝑇 (𝑓 ′2𝑎) < 𝜋𝑇 (𝑓 ′

2𝑏
). This contradicts the definition of 𝑓 ′

2𝑏
as

the fact in 𝐼 ′ corresponding to 𝑓2 with the smallest time, since 𝑓 ′
2𝑎 corresponds to 𝑓2 with a smaller

time. Proof by contradiction. □

Assume for contradiction that there exists 𝑓2 of 𝑟2 in 𝐼 , 𝑡2 = 𝜋𝑇 (𝑓2), 𝑡 > 𝑡2 > 𝑡1, such that the most

recent fact of 𝐼 ′ does not correspond to the most recent fact of 𝐼 . Let 𝑓 ′
2
be the corresponding input

fact in 𝐼 ′ with 𝑡 ′
2
= 𝜋𝑇 (𝑓 ′2), 𝑝 = 𝜋𝐿 (𝑓 ′2) such that 𝑡 ′ > 𝑡 ′

2
.

If 𝑟2 and 𝑟1 are both inputs of 𝐶1, then by Lemma 1, 𝑡 > 𝑡2 > 𝑡1 implies 𝑡 ′ > 𝑡 ′
2
> 𝑡 ′

1
, which

contradicts the definition of 𝑓 ′
1
as the most recent input fact.

If 𝑟2 is an input of 𝐶1 and 𝑟1 is an input of 𝐶2, then 𝑡 > 𝑡2 implies 𝑡 ′ > 𝑡 ′
2
, and 𝑡1 = 𝑡 ′

1
. Since 𝑡2 > 𝑡1

and 𝑡 ′
2
≥ 𝑡2 by construction of 𝐼 , we have 𝑡 ′ > 𝑡 ′

2
> 𝑡 ′

1
which is again a contradiction.

Now consider 𝑟2 as an input of 𝐶2 such that 𝑡 ′
2
= 𝑡2. If 𝑟1 is an input of 𝐶1, then let 𝑓 ′

1𝑎 be the

corresponding input fact in 𝐼 ′ with the smallest time 𝑡 ′
1𝑎 = 𝜋𝑇 (𝑓 ′1𝑎). By definition, 𝑡 ′

1
≥ 𝑡 ′

1𝑎 . By

construction of 𝐼 , 𝑡 ′
1𝑎 = 𝑡1, therefore 𝑡 > 𝑡2 > 𝑡1 implies 𝑡 ′ > 𝑡 ′

2
> 𝑡 ′

1𝑎 . By the partial partitioning

rewrite, no input facts can arrive on partition 𝑝 between 𝑡 ′
1𝑎 and 𝑡 ′

1
, since the outstandingVote

relation will force input relations to buffer. Therefore, given 𝑡 ′
2
> 𝑡 ′

1𝑎 and 𝑡
′
1
≥ 𝑡 ′

1𝑎 , we must have

𝑡 ′
2
> 𝑡 ′

1
≥ 𝑡 ′

1𝑎 . Combined with 𝑡 ′ > 𝑡 ′
2
> 𝑡 ′

1𝑎 , we now have 𝑡 ′ > 𝑡 ′
2
> 𝑡 ′

1
≥ 𝑡 ′

1𝑎 ; 𝑡
′
2
> 𝑡 ′

1
contradicts the

definition of 𝑓 ′
1
as the most recent input fact.

Otherwise, if 𝑟1 is an input of 𝐶2, then 𝑡 ′
1
= 𝑡1. Then 𝑡2 > 𝑡1 implies 𝑡 ′

2
> 𝑡 ′

1
, which contradicts the

definition of 𝑓 ′
1
as the most recent input fact.

We’ve proven that the most recent input fact 𝑓 ′
1
in 𝐼 ′ up to 𝑡 ′ corresponds to the most recent input

fact 𝑓1 in 𝐼 up to 𝑡 , and we can reuse earlier proofs to prove claim 2.

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 39

We show claim 3 holds, using the same variable definitions. By the partial partitioning rewrite, we

know that if an input relation rSealed of 𝐶2 is not empty, then input relations rSealed of 𝐶1 must

be empty. Let 𝑓 ′ be the input fact in 𝐼 ′ at time 𝑡 ′ with corresponding 𝑓 in 𝐼 at 𝑡 . Note that this proof

can be generalized to a set of facts 𝑓 ′ at time 𝑡 ′. By construction of 𝐼 , 𝑡 ′ = 𝑡 . Again assuming the

most recent input fact 𝑓 ′
1
of 𝑟1 in 𝐼 ′ at time 𝑡 ′

1
corresponds to 𝑓1 in 𝐼 at 𝑡1, we show that there is no

𝑓2 of 𝑟2 in 𝐼 at 𝑡2 where 𝑡 > 𝑡2 > 𝑡1.

If 𝑟2 and 𝑟1 are both inputs of𝐶1, then 𝑡2 > 𝑡1 implies 𝑡 ′
2
> 𝑡 ′

1
by Lemma 1. Since 𝑡 = 𝑡 ′, so 𝑡 > 𝑡2 > 𝑡1

implies 𝑡 ′ > 𝑡 ′
2
> 𝑡 ′

1
, which contradicts the definition of 𝑓 ′

1
as the most recent input fact.

If 𝑟2 is an input of𝐶1 and 𝑟1 is an input of𝐶2, then 𝑡1 = 𝑡 ′
1
. Since 𝑡 ′

2
≥ 𝑡2 by construction of 𝐼 , 𝑡2 > 𝑡1

implies 𝑡 ′
2
> 𝑡 ′

1
, and since 𝑡 = 𝑡 ′, 𝑡 > 𝑡2 > 𝑡1 implies 𝑡 ′ > 𝑡 ′

2
> 𝑡 ′

1
, a contradiction.

If 𝑟2 is an input of𝐶2 and 𝑟1 is an input of𝐶1, then 𝑡2 = 𝑡 ′
2
. Since 𝑡 = 𝑡 ′ and 𝑡 > 𝑡2, 𝑡

′ > 𝑡 ′
2
. 𝑡 ′ > 𝑡 ′

2
> 𝑡 ′

1

is a contradiction, and 𝑡 ′
2
≠ 𝑡 ′

1
by the partial partitioning rewrite, so we must have 𝑡 ′ > 𝑡 ′

1
> 𝑡 ′

2
. Let

𝑓 ′
1𝑎 correspond to 𝑓1 in 𝐼 ′ with the smallest time 𝑡 ′

1𝑎 = 𝜋𝑇 (𝑓 ′1𝑎). By construction of 𝐼 , 𝑡 ′
1𝑎 = 𝑡1. By

definition, 𝑡 ′
1
≥ 𝑡 ′

1𝑎 . By the partial partitioning rewrite, no input facts can arrive on node 𝑝 between

𝑡 ′
1𝑎 and 𝑡 ′

1
. Therefore, given 𝑡 ′

1
≥ 𝑡 ′

1𝑎 and 𝑡 ′
1
> 𝑡 ′

2
, we must have 𝑡 ′

1
≥ 𝑡 ′

1𝑎 > 𝑡 ′
2
. 𝑡 ′

1𝑎 > 𝑡 ′
2
implies 𝑡1 > 𝑡2,

which contradicts our assumption that 𝑡 > 𝑡2 > 𝑡1.

If 𝑟2 and 𝑟1 are both inputs of 𝐶2, then 𝑡2 = 𝑡 ′
2
and 𝑡1 = 𝑡 ′

1
. Combined with 𝑡 = 𝑡 ′, 𝑡 > 𝑡2 > 𝑡1 implies

𝑡 ′ > 𝑡 ′
2
> 𝑡 ′

1
which is a contradiction.

By induction on previous facts of input relations, we also have 𝐼 ′
𝑟 ′,𝑝,𝑡 ′

1

= 𝐼𝑟,𝑝,𝑡1 . Since inputs are the

same between 𝐼 ′ and 𝐼 at time 𝑡 ′ and 𝑡 , we can similarly use the proofs from Appendices A.4.3

and B.1.2 to prove claim 3, completing the proof of correctness.

B.4 Partitioning sealing
B.4.1 Sealing. Sealing [5] is a syntactic sugar we introduce to simulate sending multiple output

facts in a single asynchronous message. Sealed relations can be partially partitioned so each partition

can compute and send its own fraction of the sealed outputs.

Syntactically, seal is added to the head of a rule 𝜑 using aggregation syntax. We demonstrate how

to seal the relation 𝑟 in the output relation out of 𝐶 below, where 𝑠 and 𝑢 are additional illustrative

relations:

1 # Send rule on component 𝐶.
2 out(seal<r>,a,l',t') :− r(...,l,t), s(a,l,t), dest(l',l,t),

delay((...,a,l,t,l'),t')
3 # Receive rule on component 𝐶′.
4 u(...,a,l,t) :− out(...,a,l,t)

This desugars into the following, where out is replaced with outSealed in 𝐶′
:

1 # Component 𝐶.
2 rCount(count<...>,a,l,t) :− r(...,l,t), s(a,l,t)
3 outCount(c,a,l',t') :− rCount(c,a,l,t), s(a,l,t), dest(l',l,t),

delay((c,a,l,t,l'),t')
4 out(...,a,l',t') :− r(...,l,t), s(a,l,t), dest(l',l,t), delay((...,a,l,t,l'),t')
5 # Component 𝐶′.
6 outReceived(count<...>,a,l,t) :− out(...,a,l,t)
7 sealed(a,l,t) :− outReceived(c,a,l,t), outCount(c,a,l,t)
8 u(...,a,l,t) :− out(...,a,l,t), sealed(a,l,t)

, Vol. 1, No. 1, Article . Publication date: February 2024.

40 David C. Y. Chu et al.

9 # Only persist until sealed.
10 out(...,a,l,t') :− out(...,a,l,t), !sealed(a,l,t), t'=t+1
11 outCount(c,a,l,t') :− outCount(c,a,l,t), !sealed(a,l,t), t'=t+1

The sugared syntax for sealing guarantees that the relations rCount, outCount, outReceived, etc
are only used as described above, and correctness is preserved as long as after partial partitioning,

the facts in outSealed match the facts originally in out.

B.4.2 Mechanism. Sealing can be partitioned through dependency analysis on the sugared syntax;

among the rules 𝜑 introduced in𝐶 , all the joins in the body of 𝜑 were already present in the sugared

syntax.

If out cannot be partitioned with dependencies, and it has an existence dependency on some input

relation in of 𝐶1, then the rewrite is as follows:

Rewrite: Partitioning Sealing. After completing the partial partitioning rewrite over the sugared

syntax, perform the following rewrites. On 𝐶 , replace Lines 1 and 4 with the following, assuming

inCommit is defined for in as specified in Appendix B.3.1:

1 outCount(l,i,c,a,l,t) :− rCount(c,a,l,t), inCommit(i,...,l,t), dest(l',l,t),
delay((l,i,c,a,l,t,l'),t')

2 out(i,...,a,l',t') :− r(...,a,l,t), s(a,l,t), inCommit(i,...,l,t), dest(l',l,t),
delay((i,...,a,l,t,l'),t')

On 𝐶′
, introduce the relation numPartitions(𝑛) and populate with it the number of nodes 𝑎𝑑𝑑𝑟𝑖 .

Replace Lines 6 and 7 with the following code.

1 outReceived(i,count<...>,a,l,t) :− out(i,...,a,l,t)
2 # Sum the expected messages from all partitions.
3 outCountSum(i,sum<c>,a,l,t) :− outCount(p,i,c,a,l,t)
4 # Check if all partitions have sent their counts.
5 outCountPartitions(count<p>,i,a,l,t) :− outCount(p,i,c,a,l,t)
6 sealed(a,l,t) :− outReceived(i,c,a,l,t), outCountSum(i,c,a,l,t),

outCountPartitions(n,i,a,l,t), numPartitions(n)

B.4.3 Proof. Unlike the proof in Appendix B.3.2, we cannot reuse the proof in Appendix B.1.2

because out is technically neither fully or partially partitioned; instead outCount is partially parti-

tioned and the logic of 𝐶′
is modified. Instead, we show that for instance 𝐼 ′ after transformation,

𝑟 = sealedOut, for all time 𝑡 , there exists 𝐼 such that 𝐼 ′𝑟,𝑡 = 𝐼𝑟,𝑡 . The proof of correctness for all other

relations in 𝐶 is covered by Appendix B.3.2, as 𝑟 is an output relation so no other relations in 𝐶 are

dependent on 𝑟 .

Since 𝑟 has an existence dependency on some input rSealed of 𝐶1, we only need to consider

the times when rSealed is not empty. Consider time 𝑡 ′ in 𝐼 ′ where rSealed contains some fact

𝑓 ′. By partial partitioning, there is no other fact in rSealed with the same time as 𝑓 ′. Consider
all corresponding facts of 𝑓 ′ for each node 𝑝 , and their corresponding times 𝑡 ′𝑝 . By the proof in

Appendix B.3.2, there exists a time 𝑡 in 𝐼 such that for each 𝑡 ′𝑝 , 𝐼
′
𝑟 ′,𝑝,𝑡 ′𝑝

= 𝐼𝑟,𝑝,𝑡 .

Let 𝜑 be any rule in 𝐶 with 𝑟 in its head. The body of 𝜑 are referenced in 𝐶 and included in 𝑟 ′ in
𝐼 ′ and 𝑟 in 𝐼 , respectively, and since those relations contain the same facts at times 𝑡 ′𝑝 and 𝑡 , the

will evaluate to the same output facts 𝑓 ′ and 𝑓 , except the range of possible times for 𝑓 ′ is (𝑡 ′𝑝 ,∞)
while the range is (𝑡,∞) for 𝑓 . By construction of 𝐼 , 𝑡 ′𝑝 ≥ 𝑡 , so the range of possible times for 𝑓 ′ is a
subset of the range for 𝑓 , and any immediate consequence producing 𝑓 ′ in 𝐼 ′ is possible in 𝐼 . Note

, Vol. 1, No. 1, Article . Publication date: February 2024.

Optimizing Distributed Protocols withQuery Rewrites [Technical Report] 41

Fig. 11. Non-linearizable execution of CompPaxos. Acceptor 𝑎3 is excluded for simplicity. Lighter-gray
acceptors belong to partition 1, and darker-gray acceptors to partition 2. Each set of requests and matching
responses are a different color.

that the addition of the body term inCommit does not affect the immediate consequence, since we

assumed that 𝑟 already has an existence dependency on in. Similar logic applies for the evaluation

of outCount, completing our proof.

C NON-LINEARIZABLE EXECUTION OVER PARTITIONED ACCEPTORS
CompPaxos partitions acceptors without introducing coordination, allowing each node to hold an

independent ballot. In contrast, ScalablePaxos can only partially partition acceptors and must

introduce coordinators to synchronize ballots between nodes, because our formalism states that the

nodes’ ballots together must correspond to the original acceptor’s ballot. Proposers in CompPaxos

can become the leader after receiving replies from a quorum of any 𝑓 + 1 acceptors for each set of

𝑛 nodes; the nodes across quorums do not need to correspond to the same acceptors. In contrast,

the 𝑛 nodes of each acceptor in ScalablePaxos represent one original acceptor, so proposers in

ScalablePaxos become the leader after receiving replies from all 𝑛 nodes of a quorum of 𝑓 + 1

acceptors. Crucially, by allowing the highest ballot held at each node to diverge, CompPaxos can

introduce non-linearizable executions that remain safe for Paxos, but are too specific to generalize.

We first define what it means for a Paxos implementation to be linearizable. A p1a and its corre-

sponding p1b correspond to a request and matching response in the history. For an implementation

of Paxos to be linearizable, the content of each p1b must be consistent with its matching p1a taking
effect some time between the p1a arrival time and the p1b response time. The same statements

hold for p2a and matching p2b messages. Since p1a and p1b messages are now sent to each node in

CompPaxos, we must modify the definition of linearizability for CompPaxos accordingly. Assume

that a p1a arriving at acceptor 𝑎 in Paxos corresponds to the arrival of the same p1a messages at all

nodes of 𝑎 in CompPaxos, and a matching p1b arriving at proposer 𝑝 in Paxos corresponds to the

arrival of all matching p1b messages at 𝑝 in CompPaxos.

Now consider the execution shown in Figure 11:

(1) Proposer 𝑝1 broadcasts p1a with ballot 1. It arrives all acceptors except partition 1 of acceptor

𝑎1. The other acceptors return p1b with ballot 1.

(2) Proposer 𝑝2 broadcasts p1a with ballot 2. It arrives at all partitions of every acceptor, which

return p1b with ballot 2. Proposer 𝑝2 is elected leader.

, Vol. 1, No. 1, Article . Publication date: February 2024.

42 David C. Y. Chu et al.

(3) Proposer 𝑝2 sends p2a with ballot 2, message “foo”, and slot 0 to partition 2 of every acceptor,

which return p2b with ballot 2. “foo” is committed.

(4) Proposer 𝑝2 then sends p2a with ballot 2, message “bar”, and slot 1 to partition 1 of every

acceptor, which return p2b with ballot 2. “bar” is committed.

(5) Proposer 𝑝1’s p1a finally arrives at partition 1 of 𝑎1, which returns p1b with ballot 2, containing

“bar” in its log. Proposer 𝑝1 merges the p1bs it has received and concludes that the log contains

only “bar”.

The execution is non-linearizable: by reading “bar”, 𝑝1’s p1b must happen-after the write of “bar”,

which happens-after the write of “foo”, but 𝑝1 does not read “foo”, so it must happen-before the

write of “foo”. Why is CompPaxos correct despite allowing such non-linearizable executions?

Non-linearizable reads of the log are only possible in Paxos when a proposer fails leader election,

in which case, the log is discarded and the proposer tries again. The non-linearizable log is never

used. Intuitively, because phase 1 (leader election) quorums must intersect, in order for a proposer

𝑝1 to read a write from 𝑝2 that occurred while 𝑝1 was attempting leader election, 𝑝2 must have

completed leader election, overlapping in at least 1 acceptor with 𝑝1 and preempting 𝑝1. Thus 𝑝1
will fail to become the leader and the log it receives in p1b does not matter.

These differences stem from rewrites that are specific to Paxos and require an in-depth, global

understanding of the protocol. By design, our rule-driven rewrite framework is protocol-agnostic

and considers only local rewrites. In contrast, CompPaxos is able to admit rewrites that introduce

non-linearizable executions as it can prove that the results of these executions are never used.

, Vol. 1, No. 1, Article . Publication date: February 2024.

	Abstract
	1 Introduction
	2 Background
	2.1 Running example
	2.2 Datalog
	2.3 Dedalus
	2.4 Further terminology
	2.5 Correctness

	3 Decoupling
	3.1 Mutually Independent Decoupling
	3.2 Monotonic Decoupling
	3.3 Functional Decoupling

	4 Partitioning
	4.1 Co-hashing
	4.2 Dependencies
	4.3 Partial partitioning

	5 Evaluation
	5.1 Experimental setup
	5.2 Rewrites and scaling
	5.3 Comparison to ad hoc rewrites
	5.4 On the Benefit of Individual Rewrites

	6 Related work
	6.1 Manual Protocol Optimizations
	6.2 Parallel Query Processing and Dataflow
	6.3 DSLs for Distributed Systems

	7 Conclusion
	References
	A Decoupling
	A.1 Mutually independent decoupling
	A.2 Monotonic decoupling
	A.3 Functional decoupling
	A.4 State machine decoupling
	A.5 Asymmetric decoupling

	B Partitioning
	B.1 Partitioning by co-hashing
	B.2 Partitioning with dependencies
	B.3 Partial partitioning
	B.4 Partitioning sealing

	C Non-linearizable execution over partitioned acceptors

