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Abstract

Optimizing a stateful dataflow language is a challenging task.
There are strict correctness constraints for preserving prop-
erties expected by downstream consumers, a large space
of possible optimizations, and complex analyses that must
reason about the behavior of the program over time. Classic
compiler techniques with specialized optimization passes
yield unpredictable performance and have complex correct-
ness proofs. But with e-graphs, we can dramatically simplify
the process of building a correct optimizer while yielding
more consistent results! In this short paper, we discuss our
early work using e-graphs to develop an optimizer for a
the Hydroflow dataflow language. Our prototype demon-
strates that composing simple, easy-to-prove rewrite rules
is sufficient to match techniques in hand-optimized systems.
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1 Introduction

As applications scale to handle geodistributed users who in-
teract in real-time, streaming dataflow systems have gained
popularity as a way to enable low-latency computations on
live data. Existing dataflow systems focus primarily on exe-
cution performance, utilizing incremental computation [2, 6]
and operator fusion [9]. But recent directions such as the Hy-
dro project [3] focus on language designs that make it easier
for developers to reason about correctness and compilers to
automatically discover and apply optimizations.

In this extended abstract, we focus on our efforts in build-
ing an optimizer for Hydroflow [10, 11], a low-level dataflow
language embedded in Rust. Hydroflow is intended as an
“LLVM IR for distributed programs,” designed to provide a
simple and clear execution model that can be leveraged as
a target of higher-level languages. For example, we are ac-
tively building a execution engine for Dedalus [1], a variant
of Datalog, by compiling it down to Hydroflow.

Being at the lowest level of the Hydro stack, individual
Hydroflow programs are actually not distributed—they de-
scribe a streaming computation executed on a single thread.
Instead, Hydroflow focuses on making effects of time, such
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as non-deterministic batching, explicit in the program. Hy-
droflow programs can then be safely composed with network
connections at their boundaries to form a distributed system.

Writing an optimizer for such a programming language is
a daunting task. We need to apply program-wide transforma-
tions in the style of a query optimizer [4], but using heuristics
to order optimization passes can lead to unpredictable per-
formance. Many Hydroflow transformations result in graphs
with equal or higher intermediate cost, but can enable later
optimizations that dramatically reduce the final cost. Because
Hydroflow is a compiler target, ordered passes are especially
problematic because they would place a burden on upstream
compilers to emit "optimizer-friendly” Hydroflow.

But e-graphs [7, 8] give us a glimmer of hope! Instead of
greedily making optimization decisions, we can compose
local rewrite rules and efficiently explore the full space of
transformations. Using e-graphs to drive our optimizing com-
piler enables three key opportunities:

1. We can define primitive rewrites that map to core
dataflow properties (distributive, deterministic, etc.)
instead of brittle special-cases.

2. Our correctness proofs are much simpler, because we
can independently prove low-level rules.

3. We can implement optimizations that involve induc-
tive proofs over time, by using equivalence predicates
that search the e-graph for cycles.

We present our early work using e-graphs in Hydroflow
to optimize stateful dataflow. Our rewrite rules make spe-
cial use of the e-graph model, with some rules searching for
equivalence cycles that can be optimized into incremental
computation. By applying local rewrites, Hydroflow can ex-
pose high-level stateful operators while ensuring that they
are optimized away ahead-of-time. In particular, our rewrite
rules are sufficient for the optimizer to automatically dis-
cover classic patterns such as streaming joins.

Our rewrite rules are easy to verify, and can be applied
in a general-purpose manner to any dataflow. Although we
have seen success in our early prototypes, e-graphs are not
(yet) a perfect solution for dataflow optimization. We discuss
diamonds, a class of dataflow structures that are difficult to
optimize with e-graphs, and explore directions for future
work to address these limitations.
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2 Motivating Example

Before we dive into the optimizer, let us explore how devel-
opers can build streaming dataflow services in Hydroflow.
Consider a simple chat application, where users can join a
channel and receive all messages sent (including those before
they joined). To keep things simple, we’ll consider the case
where there is only a single channel.

Hydroflow programs are written sets of declarative state-
ments that connect pipelines to each other through op-
erators, which define logic such as map, filter, or join.
Operators can take multiple inputs (senders explicitly index
into these), and local pipelines can be created by chaining
together several operators. In addition, Hydroflow supports
dataflow cycles, which if present are run to fixpoint.

Our application has two streaming inputs, one for users
requesting to join the channel (add_member), and one for
messages being sent by users (messages). We can send mes-
sages to users by sending (user, msg) pairs to a downstream
notify pipeline. An initial attempt to implement this in
Hydroflow may look like the following.

add_member -> [@] broadcast
messages -> [1] broadcast
broadcast = cross() -> notify
notify =

In this case, we can broadcast messages by taking the cross
product (with cross) of the users added to the channel and
messages sent. But this program will actually behave incor-
rectly! To understand why, we need to dive into Hydroflow’s
execution model.

Each Hydroflow program (“spinner”) executes as an event
loop. At the beginning of each iteration, called a “tick,” Hy-
droflow collects any available network packets for each input
channel into a batch. The dataflow is then executed on these
batches, and once fixpoint is reached the values accumu-
lated at each output are flushed to the network. Critically,
all dataflow operators are stateless by default, so all state is
cleared at the end of a tick.

In our example, this means that our program will only
broadcast messages to users that joined in the same tick. This
“catch” is by design—Hydroflow guides users to be mindful
of the effects of network latency and batching on their pro-
grams. Indeed, there is nothing in our code that corresponds
to showing previous messages to newly joined users.

Let us fix this. Hydroflow has a stateful operator, persist,
which consumes elements from some upstream source and
emits the entire history of values it has received up to and
including the current tick. With this operator, it is easy to
get a more sensible program:

add_member -> persist() -> [@] broadcast
messages -> persist() -> [1] broadcast
broadcast = cross() -> notify

There is still one last issue. Because persist replays the
entire history of messages in every tick, clients will be sent
repeated notifications for the same message. We can fix this
by using the inverse of persist, the delta operation. This
dataflow element consumes values from an upstream source,
but only emits the new values in this tick. So our final, com-
plete program looks like the following:

add_member -> persist() -> [0] broadcast
messages -> persist() -> [1] broadcast
broadcast = cross() -> delta() -> notify

That’s all! We now have a precise implementation of our
specified program semantics. But this is not particularly effi-
cient. In a naive execution of this dataflow, we will take the
cross product with all messages in the history of the channel,
only to later perform a delta that retains only the new mes-
sages and replays for newly joined members. Our goal is to
preserve this clear model for computation while optimizing
away the inefficiencies of naive state accumulation.

3 Optimizing Stateful Dataflow

To tackle the issue of inefficient stateful operators in dataflows,
we turn to e-graphs. Our goal is to identify rewrite rules that
optimize subflows while preserving which values are emit-
ted and any ordering guarantees. An important principle in
our usage of e-graphs is boiling down optimizations to first
principles. Rather than baking in specific rules for operations
like cross-products, we instead want to identify more general
rules that can be composed during e-graph expansion.

First, we need to define an encoding of Hydroflow graphs
as expressions that we can define rewrite rules over. For our
prototype, we use a tree encoding, where dataflow operators
are defined as functions with inputs passed as parameters.
In our prototype, we elide any non-dataflow inputs (such as
user-defined functions) because our optimizations do not cur-
rently make use of them. With our encoding, the motivating
example can be expressed as an expression:

(delta (cross
(persist add_member)
(persist messages)))

Using a tree encoding has some limitations, such as being
unable to express dataflows where a shared computation has
several consumers. We discuss our current solutions for these
challenges and propose opportunities for future research in
Section 4. In our discussion of using e-graphs to discover
dataflow optimizations, this representation is sufficient.

3.1 Rewriting Persist

Let’s start with some of the simpler rules. In the previous
section, we introduced the persist and delta operators for
reasoning about accumulated state. These are inverses, so
we can define a rewrite for persist followed by a delta. In
the syntax of egg, we can specify the rewrite:
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(delta (persist ?a)) <=> ?a

Next, we develop rewrite rules for reasoning about the
behavior of persist. We discussed earlier that persist re-
plays the messages it received in previous ticks, and also
emits the values received from upstream in the current loop.
A natural rewrite rule, then, is to make these semantics
explicit so that our optimizer can reason about these two
sources of values.

We can introduce a new operator old, which behaves the
same as persist except it does not emit the new values re-
ceived from upstream. Then we can use the chain operator,
which combines messages received from two upstream chan-
nels by emitting all values from the first before all values
from the second, to rewrite a persist:

(persist ?a) <=> (chain (old ?a) ?a)
With the rules so far, we can rewrite our working example
to replace the persist operators:

(delta (cross
(chain
(old add_member)
add_member)
(chain
(old messages)
messages)))

3.2 Distributing Cross Products

A natural next step for our rewrite rules is to reason about
cross products over chained input channels. The cross prod-
uct operator is distributive over chains (it makes no guar-
antees about the order of output tuples), so we can define
a rewrite rule for this. Because cross is not commutative
(the order of elements in each tuple matters), we must also
define a rule for when the chain is in the second input. In
summary, we add the following rules:

(cross (chain ?a ?b) ?c) <=> (chain (cross ?a

?c) (cross ?b ?c))
(cross a? (chain ?b ?¢)) <=> (chain (cross ?a ?b)
(cross ?a ?c))

Applying both of these rules to our working example, we
can shift both chain operators to the other side of the cross
product, which reveals how new and old data individually
contribute to the final result:

(delta (chain
(chain
(cross
(old add_member) (old messages))
(cross (old add_member) messages)
)
(chain
(cross add_member (old messages))
(cross add_member messages)

)

Next, we have another rewrite rule corresponding to a
fundamental property of dataflow operators: associativity.
Because chain is associative, we can shift around the group-
ing with a rewrite rule:

(chain (chain ?a ?b) ?c) <=>
(chain ?a (chain ?b ?c))

This rewrite rule allows us to isolate the cross product
dealing with only old values, which we will need later on to
make this computation incremental:

(delta (chain

(cross
(old add_member) (old messages))
(chain
(cross (old add_member) messages)
(chain

(cross add_member (old messages))
(cross add_member messages)

)
)

3.3 Modeling Determinism

Our next insight is that we have not yet used the property of
determinism in a rewrite. We know that cross (along with
most other dataflow operators) is deterministic—it produces
the same tuples (still with no ordering guarantee) over ticks
as long as the input streams produce the same values.

Let us codify this by introducing a new dataflow operator
prev. This operator simply emits the values it received in
the previous tick. First, we define a rewrite relating old and
persist with prev. Then, we can define a rewrite rule for
cross that uses the fact that it is deterministic to shift a
computation to a previous tick:

(old ?a) <=> (prev (persist ?a))
(cross (prev ?a) (prev ?b)) <=>
(prev (cross ?a ?b))

Again, these rewrite rules describe the core properties of
our operators rather than a specific optimization case. Let’s
take a look at a rewrite of our program with these rules
applied:

(delta (chain
(prev (cross
(persist add_member) (persist messages)
»
(chain
(cross (old add_member) messages)
(chain
(cross add_member (old messages))
(cross add_member messages)

)
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3.4 Putting it Together: Incrementalization

Finally, we we can optimize our dataflow into an incremen-
tal computation. We notice that the e-node for the subex-
pression inside the delta has remained within the same
e-class as the original subexpression ((cross (persist
add_member) (persist messages)), at the beginning of
Section 3). This original subexpression appears within our
chain, which means that we could instead just add to the
existing result from the previous tick! This is an exciting
result; we have identified an incremental way to compute
the cross product by composing primitive rewrites rather
than writing specialized rules.

Indeed, we only have one rewrite that deals with incre-
mental computation. We are looking for a cycle through
a prev node, so we can attach a predicate that checks for
equivalence between the root and the child inside prev:

(chain (prev ?a) ?b) => (persist ?b)

if eclass((chain (prev ?a) ?b)) = eclass(?a)

The proof of correctness for this rewrite relies on induc-
tion over ticks. In the base case, (prev ?a) is an empty
stream, so (chain (prev ?a) ?b) = ?b = (persist ?b)
because there are no previous persisted values. In the induc-
tive step, we know that (prev (chain (prev ?a) 7?b)).
Then, our equivalence constraint says that (prev (persist
?b)) = (prev (chain (prev ?a) ?b)) = (prev ?a). We
can wrap these expressions to get (chain (prev ?a) ?b)
= (chain (prev (persist ?b)) ?b).The latter is the defi-
nition of (persist ?b) so our rule is correct. Applying this
to our working example, we get:

(delta (persist (chain
(cross (old add_member) messages)
(chain
(cross add_member (old messages))
(cross add_member messages)
)
)))

Finally, we can apply the first rewrite rule we defined to
cancel out the delta and persist and obtain an efficient,
incremental dataflow:

(chain
(cross (old add_member) messages)
(chain
(cross add_member (old messages))
(cross add_member messages)

)

So far, we have discussed only the rewrite rules, but have
not specified how we pick a single rewritten program from
the expanded e-graph. To do this, we can specify a sim-
ple cost model that computes the number of nodes with a
higher weight for delta nodes because these indicate dupli-
cated work. With this cost model, we can apply the same

set of rewrite rules to a three-way cross product (between
add_member, messages, and platforms), and discover an
appropriate incremental algorithm:

(chain
(cross
add_member
(cross
(old messages) (old platforms)))
(cross
(persist add_member)
(chain
(cross messages (old platforms))
(cross
(persist messages) platforms))))

What is exciting is that our rules around manipulating
delta/persist/old operators are general, with no rules spe-
cific to the cross case. If we define similar rules for distribu-
tion and determinism over the join operation, we can derive
the incremental semi-naive datalog evaluation from scratch!
By using e-graphs to explore the search space of composed
rewrites, we are able to easily support a large swath of pro-
grams with minimal effort needed to define rewrites and
verify their correctness.

4 Diamonds are Hard to Crack

There is one limitation of our approach using e-graphs that
is hard to ignore, yet leaves many exciting opportunities for
future work in the wider e-graphs space. In Hydroflow, the
data flowing out of a node can be used by several downstream
paths through the tee operator, which at runtime sends
copies of each incoming value to each consuming operator.
For example, we can use tee to compute users who should
meet at the next Bay Area e-graph meetup:

members = add_member -> persist() -> tee()
meetup = cross()
members -> map(with_school)

-> filter(berkeley) -> [0] meetup
members -> map(with_school)

-> filter(stanford) -> [1] meetup

In the cost model for an optimizer, it is critical to take
into account that the computation before the tee is only
performed once each tick, regardless of the number of con-
sumers. But with our encoding of dataflow as expressions,
this is currently not possible, because we can only extract
computation trees rather than general DAGs.

In particular, the dataflow structure that breaks our encod-
ing is a diamond, a dataflow where a common computation
is transformed in different ways that are eventually merged
together (by interleaving their elements, joining on a key,
etc). This is similar to a common table expression (CTE)
in database lingo or a let-binding in functional languages,
where a single result is produced.
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In our current prototype, we simply flatten all diamonds
by duplicating their shared subexpressions, and re-form dia-
monds after optimization by searching for identical expres-
sions in the output. But in an ideal system, diamonds would
be handled just like any other constructs in the optimizer.
There are three key challenges in optimizing diamonds:

1. When computing the cost function for a node, a com-
mon subexpression’s cost should be counted only once
even if is referenced multiple times.

2. We may want to shift logic from the common subex-
pression into its downstream consumers (inlining), to
enable further optimizations.

3. The reverse of (2), after performing rewrites we may
want to extract shared logic into a common subex-
pression to avoid duplicate computation.

4.1 Forming Diamonds with Zippers

In our early prototypes, we designed an explicit operator that
captures the structure of a diamond. The diamond operator
takes four parameters: the shared computation, two “edges”
that describe the transformations being applied to data from
the common source, and a merge node that defines how to
combine the results from the two edges. This representation
immediately solves challenge (1), since we precisely capture
which computation is shared between multiple paths. For
example, we can encode the earlier example with diamond:

(diamond
(persist add_member)
(zipper
in
(map with_school
(filter berkeley out)))
(zipper
(filter stanford
(map with_school in))
out)
(cross first second))

A key trick in this formulation is representing the “edges”
of the diamond using a zipper [5] data structure. The nesting
of operators is reversed between the halves of the zipper. In
the first half, operator nodes have their inputs as children,
but in the second half they have consumers as children. We
use two special variables, first and second, to reference
the values flowing out of both edges of the diamond.

What is powerful about zippers is that they make it possi-
ble to isolate either the first or last operator in a sequence by
shifting the “cursor,” the point where the two halves meet.
In standard zipper implementations, this is implemented by
popping an element from one half and pushing it to the other.
For our encoding, we similarly remove the outermost oper-
ator from one half and wrap the other half with it. In our
example, we can shift the cursors in both zippers to isolate
one operator in each half:

(diamond
(persist add_member)
(zipper
(map with_school in)
(filter berkeley out))
(zipper
(map with_school in)
(filter stanford out))
(cross first second))

After isolating the last operator of the edge in the second
half of a zipper, we can apply another rewrite to inline the
operator in the output, solving challenge (2). Thanks to the
symmetry of the zipper, we can also solve challenge (3). If
a single operator is isolated in the first half of each zipper,
and is the same for both edges, it can be shared. Applying
both rewrites, we can transform our example to:

(diamond
(map with_school (persist add_member))
(zipper in out)
(zipper in (filter stanford out))
(cross (filter berkeley first) second))

This encoding comes with a catch: there are dataflow
graphs that cannot be encoded in terms of this diamond
operator. Because our zippers only represent flat sequences,
we cannot have any multi-input operators along an edge,
unless those operators are part of a sub-diamond. In addition,
manipulating zippers is very expensive, as we generate new
e-classes for both halves whenever we perform a cursor shift,
causing the e-graph to expand quite quickly. But rewrite
rules consuming zippers only care about the isolated first or
last operator, so other intermediate states only exist for the
shifting rule. In future work, we hope to explore ways to
more efficiently represent zipper structures in an e-graph
to take advantage of this domain-specific knowledge rather
than naively using standard rewrite rules.

5 Conclusion

Developing optimizers is a challenging task, and building one
for a low-level dataflow language is that much more daunt-
ing. The space of possible optimized programs is massive,
and developing specialized rules can lead to brittle behavior.
But with e-graphs, we can boil down dataflow optimization
into a set of core rules that map to fundamental properties
of operators such as associativity and determinism. By lever-
aging the composition of these rules, we can automatically
discover optimizations such as incremental joins without
specialized rules and cumbersome proof effort. E-graphs are
not a perfect solution for all cases, with diamonds particu-
larly hard to optimize, but there are promising directions that
allow us to preserve the simplicity of local rewrites while
supporting more programs.
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